Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
Bone. 2021 Mar;144:115802. doi: 10.1016/j.bone.2020.115802. Epub 2020 Dec 10.
The potential of whole body vibration (WBV) to maintain or enhance musculoskeletal strength during ageing is of increasing interest, with both low and high magnitude WBV having been shown to maintain or increase bone mineral density (BMD) at the lumbar spine and femoral neck. The aim of this study was to determine how a range of side alternating and vertical WBV platforms deliver vibration stimuli up through the human body. Motion capture data were collected for 6 healthy adult participants whilst standing on the Galileo 900, Powerplate Pro 5 and Juvent 100 WBV platforms. The side alternating Galileo 900 WBV platform delivered WBV at 5-30 Hz and amplitudes of 0-5 mm. The Powerplate Pro 5 vertical WBV platform delivered WBV at 25 and 30 Hz and amplitude settings of 'Low' and 'High'. The Juvent 1000 vertical WBV platform delivered a stimulus at a frequency between 32 and 37 Hz and amplitude 10 fold lower than either the Galileo or Powerplate, resulting in accelerations of 0.3 g. Motion capture data were recorded using an 8 camera Vicon Nexus system with 21 reflective markers placed at anatomical landmarks between the toe and the forehead. Vibration was expressed as vertical RMS accelerations along the z-axis which were calculated as the square root of the mean of the squared acceleration values in g. The Juvent 1000 did not deliver detectable vertical RMS accelerations above the knees. In contrast, the Powerplate Pro 5 and Galileo 900 delivered vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine. The maximum vertical RMS accelerations at the anterior superior iliac spine (ASIS) were 1.00 g ±0.30 and 0.85 g ±0.49 for the Powerplate and Galileo respectively. For similar accelerations at the ASIS, the Galileo achieved greater accelerations within the lower limbs, whilst the Powerplate recorded higher accelerations in the thoracic spine at T10. The Powerplate Pro 5 and Galileo 900 deliver vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine, whereas the Juvent 1000 did not deliver detectable vertical RMS accelerations above the knee. The side alternating Galileo 900 showed greater attenuation of the input accelerations than the vertical vibrations of the Powerplate Pro 5. The platforms differ markedly in the transmission of vibration with strong influences of frequency and amplitude. Researchers need to take account of the differences in transmission between platforms when designing and comparing trials of whole body vibration.
全身振动(WBV)在维持或增强骨骼肌肉力量方面的潜力在老年人中越来越受到关注,低强度和高强度的全身振动都已被证明可以维持或增加腰椎和股骨颈的骨矿物质密度(BMD)。本研究的目的是确定一系列侧向交替和垂直 WBV 平台如何通过人体传递振动刺激。6 名健康成年参与者在 Galileo 900、Powerplate Pro 5 和 Juvent 100 WBV 平台上站立时,采集运动捕捉数据。侧向交替的 Galileo 900 WBV 平台以 5-30 Hz 的频率和 0-5mm 的振幅传递 WBV。Powerplate Pro 5 垂直 WBV 平台以 25 和 30 Hz 的频率以及“低”和“高”的振幅设置传递 WBV。 Juvent 1000 垂直 WBV 平台以 32 到 37 Hz 的频率和 10 倍于 Galileo 或 Powerplate 的幅度传递刺激,导致 0.3g 的加速度。运动捕捉数据使用带有 21 个反射标记的 8 个摄像头 Vicon Nexus 系统进行记录,这些标记放置在脚趾和前额之间的解剖学标志之间。振动表示为 z 轴上的垂直 RMS 加速度,该加速度是 g 中加速度值平方的平均值的平方根。 Juvent 1000 平台在膝盖上方无法检测到可检测的垂直 RMS 加速度。相比之下,Powerplate Pro 5 和 Galileo 900 平台传递的垂直 RMS 加速度足以到达股骨颈和腰椎。在前髂嵴(ASIS)处的最大垂直 RMS 加速度分别为 1.00g±0.30 和 0.85g±0.49,分别用于 Powerplate 和 Galileo。对于 ASIS 处类似的加速度,Galileo 在下肢实现了更大的加速度,而 Powerplate 在 T10 处记录了胸椎更高的加速度。Powerplate Pro 5 和 Galileo 900 平台传递的垂直 RMS 加速度足以到达股骨颈和腰椎,而 Juvent 1000 平台在膝盖上方无法检测到可检测的垂直 RMS 加速度。侧向交替的 Galileo 900 显示出比 Powerplate Pro 5 的垂直振动更大的输入加速度衰减。这些平台在振动传递方面存在明显差异,频率和幅度的影响很大。研究人员在设计和比较全身振动试验时,需要考虑平台之间的传输差异。