Suppr超能文献

使用贝叶斯聚类和轨迹分析研究电子健康记录中的儿科健康结果。

Studying pediatric health outcomes with electronic health records using Bayesian clustering and trajectory analysis.

机构信息

Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States.

Nationwide Children's Hospital, Columbus, OH, United States.

出版信息

J Biomed Inform. 2021 Jan;113:103654. doi: 10.1016/j.jbi.2020.103654. Epub 2020 Dec 11.

Abstract

Use of routinely collected data from electronic health records (EHR) can expedite longitudinal studies that investigate childhood exposures and rare pediatric health outcomes. For instance, characteristics of the body mass index (BMI) trajectory early in life may be associated with subsequent development of type 2 diabetes. Past studies investigating these relationships have used longitudinal cohort data collected over the course of many years to investigate the connection between BMI trajectory and subsequent development of diabetes. In contrast, EHR data from routine clinical care can provide longitudinal information on early-life BMI trajectories as well as subsequent health outcomes without requiring any additional data collection. In this study, we introduce a Bayesian joint phenotyping and BMI trajectory model to address data quality challenges in an EHR-based study of early-life BMI and type 2 diabetes in adolescence. We compared this joint modeling approach to traditional approaches using a computable phenotype for type 2 diabetes or separately estimated BMI trajectories and type 2 diabetes phenotypes. In a sample of 49,062 children derived from the PEDSnet consortium of pediatric healthcare systems, a median 8 (interquartile range [IQR] 5-13) BMI measurements were available to characterize the early-life BMI trajectory. The joint modeling and computable phenotype approaches found that age at adiposity rebound between 5 and 9 years was associated with higher odds of type 2 diabetes in adolescence compared to age at adiposity rebound between 2 and 5 years (joint model odds ratio [OR] = 1.77; computable phenotype OR = 1.88) and that BMI in excess of 140% of the 95th percentile for age and sex at age 9 years was associated with higher odds of type 2 diabetes in adolescence relative to children with BMI from 100 to 120% of the 95th percentile (joint model OR = 6.22; computable phenotype OR = 13.25). Estimates from the separate phenotyping and trajectory model were substantially attenuated towards the null. These results demonstrate that EHR data coupled with modern methodologic approaches can improve efficiency and timeliness of studies of childhood exposures and rare health outcomes.

摘要

利用电子健康记录(EHR)中常规收集的数据可以加速研究儿童暴露和罕见儿科健康结果的纵向研究。例如,生命早期体重指数(BMI)轨迹的特征可能与 2 型糖尿病的后续发展有关。过去研究这些关系的研究使用了多年来收集的纵向队列数据来研究 BMI 轨迹与随后发生糖尿病之间的联系。相比之下,常规临床护理的 EHR 数据可以提供有关生命早期 BMI 轨迹以及随后健康结果的纵向信息,而无需进行任何额外的数据收集。在这项研究中,我们引入了一种贝叶斯联合表型和 BMI 轨迹模型,以解决基于 EHR 的儿童早期 BMI 和青少年 2 型糖尿病研究中的数据质量挑战。我们将这种联合建模方法与使用 2 型糖尿病的可计算表型或单独估计的 BMI 轨迹和 2 型糖尿病表型的传统方法进行了比较。在来自儿科医疗保健系统 PEDSnet 联盟的 49062 名儿童样本中,中位数 8(四分位距 [IQR] 5-13)个 BMI 测量值可用于描述生命早期 BMI 轨迹。联合建模和可计算表型方法发现,与 2 至 5 岁之间的脂肪反弹年龄相比,5 至 9 岁之间的脂肪反弹年龄与青少年时期 2 型糖尿病的发病风险更高相关(联合模型优势比 [OR] = 1.77;可计算表型 OR = 1.88),并且 9 岁时超过年龄和性别第 95 个百分位数 140%的 BMI 与青少年时期 2 型糖尿病的发病风险更高相关与 BMI 从第 95 个百分位数的 100%到 120%的儿童(联合模型 OR = 6.22;可计算表型 OR = 13.25)。来自单独表型和轨迹模型的估计值大大向零衰减。这些结果表明,EHR 数据加上现代方法学方法可以提高儿童暴露和罕见健康结果研究的效率和及时性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验