Zheng Cheng, Chen Ying Qing
Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N. 10th St, Room 378, Milwaukee, USA.
Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N. Arnorld Building M2-C200, Seattle, USA.
Stat Biosci. 2020 Dec;12(3):340-352. doi: 10.1007/s12561-019-09260-4. Epub 2019 Oct 19.
In survival analysis, Cox model is widely used for most clinical trial data. Alternatives include the additive hazard model, the accelerated failure time (AFT) model and a more general transformation model. All these models assume that the effects for all covariates are on the same scale. However, it is possible that for different covariates, the effects are on different scales. In this paper, we propose a shape-invariant hazard regression model that allows us to estimate the multiplicative treatment effect with adjustment of covariates that have non-multiplicative effects. We propose moment-based inference procedures for the regression parameters. We also discuss the risk prediction and the goodness of fit test for our proposed model. Numerical studies show good finite sample performance of our proposed estimator. We applied our method to the HIVNET 012 study, a milestone trial of single-dose nevirapine in prevention of mother-to-child transmission of HIV. From the HIVNET 012 data analysis, single-dose nevirapine treatment is shown to improve 18-month infant survival significantly with appropriate adjustment of the maternal CD4 counts and the virus load.
在生存分析中,Cox模型被广泛应用于大多数临床试验数据。其他模型包括相加风险模型、加速失效时间(AFT)模型以及更一般的变换模型。所有这些模型都假定所有协变量的效应处于同一尺度。然而,不同的协变量其效应有可能处于不同尺度。在本文中,我们提出了一种形状不变风险回归模型,该模型使我们能够在调整具有非相乘效应的协变量的情况下估计相乘治疗效应。我们提出了基于矩的回归参数推断程序。我们还讨论了所提出模型的风险预测和拟合优度检验。数值研究表明我们提出的估计量具有良好的有限样本性能。我们将我们的方法应用于HIVNET 012研究,这是一项关于单剂量奈韦拉平预防母婴传播HIV的里程碑式试验。从HIVNET 012数据分析可知,在适当调整母亲的CD4细胞计数和病毒载量后,单剂量奈韦拉平治疗可显著提高18个月婴儿的存活率。