Xu Gongjun, Chiou Sy Han, Yan Jun, Marr Kieren, Huang Chiung-Yu
University of Michigan.
University of Texas at Dallas.
Stat Sin. 2020;30:1773-1795. doi: 10.5705/ss.202018.0224.
Two major challenges arise in regression analyses of recurrent event data: first, popular existing models, such as the Cox proportional rates model, may not fully capture the covariate effects on the underlying recurrent event process; second, the censoring time remains informative about the risk of experiencing recurrent events after accounting for covariates. We tackle both challenges by a general class of semiparametric scale-change models that allow a scale-change covariate effect as well as a multiplicative covariate effect. The proposed model is flexible and includes several existing models as special cases, such as the popular proportional rates model, the accelerated mean model, and the accelerated rate model. Moreover, it accommodates informative censoring through a subject-level latent frailty whose distribution is left unspecified. A robust estimation procedure which requires neither a parametric assumption on the distribution of the frailty nor a Poisson assumption on the recurrent event process is proposed to estimate the model parameters. The asymptotic properties of the resulting estimator are established, with the asymptotic variance estimated from a novel resampling approach. As a byproduct, the structure of the model provides a model selection approach among the submodels via hypothesis testing of model parameters. Numerical studies show that the proposed estimator and the model selection procedure perform well under both noninformative and informative censoring scenarios. The methods are applied to data from two transplant cohorts to study the risk of infections after transplantation.
第一,现有的流行模型,如Cox比例率模型,可能无法完全捕捉协变量对潜在复发事件过程的影响;第二,在考虑协变量后,删失时间对于经历复发事件的风险仍然具有信息价值。我们通过一类一般的半参数尺度变化模型来应对这两个挑战,这类模型允许尺度变化协变量效应以及乘性协变量效应。所提出的模型具有灵活性,并且包含几个现有模型作为特殊情况,如流行的比例率模型、加速均值模型和加速率模型。此外,它通过一个个体水平的潜在脆弱性来适应信息删失,其分布未作具体规定。提出了一种稳健的估计程序,该程序既不需要对脆弱性分布进行参数假设,也不需要对复发事件过程进行泊松假设,以估计模型参数。建立了所得估计量的渐近性质,并通过一种新颖的重采样方法估计渐近方差。作为一个副产品,模型的结构通过对模型参数的假设检验提供了一种在子模型之间进行模型选择的方法。数值研究表明,所提出的估计量和模型选择程序在非信息删失和信息删失情况下都表现良好。这些方法被应用于两个移植队列的数据,以研究移植后感染的风险。