Suppr超能文献

信息删失下复发事件过程的广义尺度变化模型。

Generalized scale-change models for recurrent event processes under informative censoring.

作者信息

Xu Gongjun, Chiou Sy Han, Yan Jun, Marr Kieren, Huang Chiung-Yu

机构信息

University of Michigan.

University of Texas at Dallas.

出版信息

Stat Sin. 2020;30:1773-1795. doi: 10.5705/ss.202018.0224.

Abstract

Two major challenges arise in regression analyses of recurrent event data: first, popular existing models, such as the Cox proportional rates model, may not fully capture the covariate effects on the underlying recurrent event process; second, the censoring time remains informative about the risk of experiencing recurrent events after accounting for covariates. We tackle both challenges by a general class of semiparametric scale-change models that allow a scale-change covariate effect as well as a multiplicative covariate effect. The proposed model is flexible and includes several existing models as special cases, such as the popular proportional rates model, the accelerated mean model, and the accelerated rate model. Moreover, it accommodates informative censoring through a subject-level latent frailty whose distribution is left unspecified. A robust estimation procedure which requires neither a parametric assumption on the distribution of the frailty nor a Poisson assumption on the recurrent event process is proposed to estimate the model parameters. The asymptotic properties of the resulting estimator are established, with the asymptotic variance estimated from a novel resampling approach. As a byproduct, the structure of the model provides a model selection approach among the submodels via hypothesis testing of model parameters. Numerical studies show that the proposed estimator and the model selection procedure perform well under both noninformative and informative censoring scenarios. The methods are applied to data from two transplant cohorts to study the risk of infections after transplantation.

摘要

复发事件数据的回归分析中出现了两个主要挑战

第一,现有的流行模型,如Cox比例率模型,可能无法完全捕捉协变量对潜在复发事件过程的影响;第二,在考虑协变量后,删失时间对于经历复发事件的风险仍然具有信息价值。我们通过一类一般的半参数尺度变化模型来应对这两个挑战,这类模型允许尺度变化协变量效应以及乘性协变量效应。所提出的模型具有灵活性,并且包含几个现有模型作为特殊情况,如流行的比例率模型、加速均值模型和加速率模型。此外,它通过一个个体水平的潜在脆弱性来适应信息删失,其分布未作具体规定。提出了一种稳健的估计程序,该程序既不需要对脆弱性分布进行参数假设,也不需要对复发事件过程进行泊松假设,以估计模型参数。建立了所得估计量的渐近性质,并通过一种新颖的重采样方法估计渐近方差。作为一个副产品,模型的结构通过对模型参数的假设检验提供了一种在子模型之间进行模型选择的方法。数值研究表明,所提出的估计量和模型选择程序在非信息删失和信息删失情况下都表现良好。这些方法被应用于两个移植队列的数据,以研究移植后感染的风险。

相似文献

2
Semiparametric estimation of the accelerated mean model with panel count data under informative examination times.
Biometrics. 2018 Sep;74(3):944-953. doi: 10.1111/biom.12840. Epub 2017 Dec 29.
3
Joint scale-change models for recurrent events and failure time.
J Am Stat Assoc. 2017;112(518):794-805. doi: 10.1080/01621459.2016.1173557. Epub 2017 Apr 12.
5
Joint modeling of generalized scale-change models for recurrent event and failure time data.
Lifetime Data Anal. 2023 Jan;29(1):1-33. doi: 10.1007/s10985-022-09573-5. Epub 2022 Sep 6.
6
Analyzing Recurrent Event Data With Informative Censoring.
J Am Stat Assoc. 2001;96(455). doi: 10.1198/016214501753209031.
7
Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring.
Biometrics. 2010 Mar;66(1):39-49. doi: 10.1111/j.1541-0420.2009.01266.x. Epub 2009 May 12.
8
Methods for multivariate recurrent event data with measurement error and informative censoring.
Biometrics. 2018 Sep;74(3):966-976. doi: 10.1111/biom.12857. Epub 2018 Feb 13.
9
Analysis of multivariate recurrent event data with time-dependent covariates and informative censoring.
Biom J. 2012 Sep;54(5):585-99. doi: 10.1002/bimj.201100194. Epub 2012 Aug 7.
10
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.

引用本文的文献

1
Statistical Inference for Counting Processes Under Shape Heterogeneity.
Stat Med. 2024 Dec 30;43(30):5849-5861. doi: 10.1002/sim.10280. Epub 2024 Nov 19.
3
Statistical inference on shape and size indexes for counting processes.
Biometrika. 2022 Mar;109(1):195-208. doi: 10.1093/biomet/asab008. Epub 2021 Feb 12.

本文引用的文献

1
Joint scale-change models for recurrent events and failure time.
J Am Stat Assoc. 2017;112(518):794-805. doi: 10.1080/01621459.2016.1173557. Epub 2017 Apr 12.
2
Analyzing Recurrent Event Data With Informative Censoring.
J Am Stat Assoc. 2001;96(455). doi: 10.1198/016214501753209031.
3
Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
J Am Stat Assoc. 2004 Dec;99(468):1153-1165. doi: 10.1198/016214504000001033.
4
An estimating function approach to the analysis of recurrent and terminal events.
Biometrics. 2013 Jun;69(2):366-74. doi: 10.1111/biom.12025. Epub 2013 May 7.
5
Delayed opportunistic infections in hematopoietic stem cell transplantation patients: a surmountable challenge.
Hematology Am Soc Hematol Educ Program. 2012;2012:265-70. doi: 10.1182/asheducation-2012.1.265.
6
Eplerenone in patients with systolic heart failure and mild symptoms: analysis of repeat hospitalizations.
Circulation. 2012 Nov 6;126(19):2317-23. doi: 10.1161/CIRCULATIONAHA.112.110536. Epub 2012 Oct 5.
7
Additive-multiplicative rates model for recurrent events.
Lifetime Data Anal. 2010 Jul;16(3):353-73. doi: 10.1007/s10985-010-9160-2. Epub 2010 Mar 14.
8
Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring.
Biometrics. 2010 Mar;66(1):39-49. doi: 10.1111/j.1541-0420.2009.01266.x. Epub 2009 May 12.
9
Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events.
Biometrics. 2009 Sep;65(3):746-52. doi: 10.1111/j.1541-0420.2008.01126.x. Epub 2008 Sep 29.
10
A class of accelerated means regression models for recurrent event data.
Lifetime Data Anal. 2008 Sep;14(3):357-75. doi: 10.1007/s10985-008-9087-z. Epub 2008 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验