Mayer Karl, Knill Emanuel
Department of Physics, University of Colorado, Boulder, Colorado, USA.
National Institute of Standards and Technology, Boulder, Colorado, USA.
Phys Rev A (Coll Park). 2018;A98. doi: 10.1103/PhysRevA.98.052326.
We investigate the problem of bounding the quantum process fidelity given bounds on the fidelities between target states and the action of a process on a set of pure input states. We formulate the problem as a semidefinite program and prove convexity of the minimum process fidelity as a function of the errors on the output states. We characterize the conditions required to uniquely determine a process in the case of no errors, and derive a lower bound on its fidelity in the limit of small errors for any set of input states satisfying these conditions. We then consider sets of input states whose one-dimensional projectors form a symmetric positive operator-valued measure (POVM). We prove that for such sets the minimum fidelity is bounded by a linear function of the average output state error. A symmetric POVM with minimal number of elements contains + 1 states, where is the Hilbert space dimension. Our bounds applied to such states provide an efficient method for estimating the process fidelity without the use of full process tomography.
我们研究了在给定目标态与过程作用于一组纯输入态之间的保真度界限的情况下,界定量子过程保真度的问题。我们将该问题表述为一个半定规划,并证明了最小过程保真度作为输出态误差的函数的凸性。我们刻画了在无误差情况下唯一确定一个过程所需的条件,并针对满足这些条件的任何一组输入态,在小误差极限下推导了其保真度的下界。然后我们考虑其一维投影算符构成对称正算子值测度(POVM)的输入态集。我们证明,对于这样的集合,最小保真度由平均输出态误差的线性函数界定。具有最小元素数的对称POVM包含(d + 1)个态,其中(d)是希尔伯特空间维度。应用于此类态的我们的界限提供了一种无需使用完整过程层析成像来估计过程保真度的有效方法。