Suppr超能文献

来自输入态集合的量子过程保真度界限

Quantum Process Fidelity Bounds from Sets of Input States.

作者信息

Mayer Karl, Knill Emanuel

机构信息

Department of Physics, University of Colorado, Boulder, Colorado, USA.

National Institute of Standards and Technology, Boulder, Colorado, USA.

出版信息

Phys Rev A (Coll Park). 2018;A98. doi: 10.1103/PhysRevA.98.052326.

Abstract

We investigate the problem of bounding the quantum process fidelity given bounds on the fidelities between target states and the action of a process on a set of pure input states. We formulate the problem as a semidefinite program and prove convexity of the minimum process fidelity as a function of the errors on the output states. We characterize the conditions required to uniquely determine a process in the case of no errors, and derive a lower bound on its fidelity in the limit of small errors for any set of input states satisfying these conditions. We then consider sets of input states whose one-dimensional projectors form a symmetric positive operator-valued measure (POVM). We prove that for such sets the minimum fidelity is bounded by a linear function of the average output state error. A symmetric POVM with minimal number of elements contains + 1 states, where is the Hilbert space dimension. Our bounds applied to such states provide an efficient method for estimating the process fidelity without the use of full process tomography.

摘要

我们研究了在给定目标态与过程作用于一组纯输入态之间的保真度界限的情况下,界定量子过程保真度的问题。我们将该问题表述为一个半定规划,并证明了最小过程保真度作为输出态误差的函数的凸性。我们刻画了在无误差情况下唯一确定一个过程所需的条件,并针对满足这些条件的任何一组输入态,在小误差极限下推导了其保真度的下界。然后我们考虑其一维投影算符构成对称正算子值测度(POVM)的输入态集。我们证明,对于这样的集合,最小保真度由平均输出态误差的线性函数界定。具有最小元素数的对称POVM包含(d + 1)个态,其中(d)是希尔伯特空间维度。应用于此类态的我们的界限提供了一种无需使用完整过程层析成像来估计过程保真度的有效方法。

相似文献

1
Quantum Process Fidelity Bounds from Sets of Input States.
Phys Rev A (Coll Park). 2018;A98. doi: 10.1103/PhysRevA.98.052326.
2
Bounding the Benefit of Adaptivity in Quantum Metrology Using the Relative Fidelity.
Phys Rev Lett. 2021 Oct 8;127(15):150501. doi: 10.1103/PhysRevLett.127.150501.
3
Adaptive State Fidelity Estimation for Higher Dimensional Bipartite Entanglement.
Entropy (Basel). 2020 Aug 12;22(8):886. doi: 10.3390/e22080886.
4
Bounding the Set of Finite Dimensional Quantum Correlations.
Phys Rev Lett. 2015 Jul 10;115(2):020501. doi: 10.1103/PhysRevLett.115.020501. Epub 2015 Jul 7.
5
Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate.
Phys Rev Lett. 2013 Oct 18;111(16):160407. doi: 10.1103/PhysRevLett.111.160407. Epub 2013 Oct 17.
6
Enabling Computation of Correlation Bounds for Finite-Dimensional Quantum Systems via Symmetrization.
Phys Rev Lett. 2019 Feb 22;122(7):070501. doi: 10.1103/PhysRevLett.122.070501.
7
Optimal strategies for estimating the average fidelity of quantum gates.
Phys Rev Lett. 2013 Nov 15;111(20):200401. doi: 10.1103/PhysRevLett.111.200401. Epub 2013 Nov 12.
8
Generalized Quantum Measurements on a Higher-Dimensional System via Quantum Walks.
Phys Rev Lett. 2023 Oct 13;131(15):150803. doi: 10.1103/PhysRevLett.131.150803.
9
Quantum fidelity measures for mixed states.
Rep Prog Phys. 2019 Jul;82(7):076001. doi: 10.1088/1361-6633/ab1ca4. Epub 2019 Apr 25.
10
Ancilla-assisted calibration of a measuring apparatus.
Phys Rev Lett. 2012 Jun 22;108(25):253601. doi: 10.1103/PhysRevLett.108.253601. Epub 2012 Jun 19.

本文引用的文献

1
Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate.
Phys Rev Lett. 2013 Oct 18;111(16):160407. doi: 10.1103/PhysRevLett.111.160407. Epub 2013 Oct 17.
2
Direct fidelity estimation from few Pauli measurements.
Phys Rev Lett. 2011 Jun 10;106(23):230501. doi: 10.1103/PhysRevLett.106.230501. Epub 2011 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验