Department of Optics, Palacký University, 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
Phys Rev Lett. 2013 Oct 18;111(16):160407. doi: 10.1103/PhysRevLett.111.160407. Epub 2013 Oct 17.
We propose an efficiently measurable lower bound on quantum process fidelity of N-qubit controlled-Z gates. This bound is determined by average output state fidelities for N partially conjugate product bases. A distinct advantage of our approach is that only fidelities with product states need to be measured while keeping the total number of measurements much smaller than what is necessary for full quantum process tomography. As an application, we use this method to experimentally estimate quantum process fidelity F of a three-qubit linear optical quantum Toffoli gate and we find that F≥0.83. We also demonstrate the entangling capability of the gate by preparing Greenberger-Horne-Zeilinger-type three-qubit entangled states from input product states.
我们提出了一种高效可测的 N 量子比特受控-Z 门量子过程保真度的下界。该下界由 N 个部分共轭乘积基的平均输出态保真度确定。我们方法的一个显著优点是,仅需要测量具有乘积态的保真度,同时保持测量的总数远小于全量子过程层析所必需的数量。作为应用,我们使用该方法实验估计了三量子比特线性光学量子 Toffoli 门的量子过程保真度 F,发现 F≥0.83。我们还通过从输入乘积态制备格林伯格-霍恩-泽林格型三量子比特纠缠态来展示该门的纠缠能力。