Han Liang, Zhang Mutian, Wang Huanlei, Li Ping, Wei Wenrui, Shi Jing, Huang Minghua, Shi Zhicheng, Liu Wei, Chen Shougang
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Nanoscale. 2020 Dec 23;12(48):24477-24487. doi: 10.1039/d0nr07359h.
The practical application of transition metal phosphides has been hampered by the inferior rate capability and large volume change during charging and discharging processes. To address this, the construction of metal phosphide heterostructures combined with a porous carbon skeleton is a promising strategy for providing fast charge transfer kinetics. Herein, hetero-CoP/FeP nanoparticles embedded in porous carbon nanofibers (CoP/FeP@PCNFs) are obtained by coaxial electrospinning and low-temperature phosphorization processes. By employing CoP/FeP@PCNFs as the anode for sodium-ion batteries, a large reversible specific capacity (459 mA h g-1 at 0.05 A g-1), excellent rate performance (46.4% capacity retention rate at 10 A g-1 relative to 0.05 A g-1) and long-term cycling stability (208 mA h g-1 at 5 A g-1 over 1000 cycles and 73.5% capacity retention) can be obtained. By virtue of the porous structure and heterogeneous structure, the electrochemical performance of the CoP/FeP@PCNF sample was greatly improved. The porous structure can promote the ion transport and accommodate the volume expansion. Density functional theory calculation confirms that the constructed heterostructure can generate a built-in electric field and facilitate the reaction kinetics of Na+. This work provides the basic guidance for the future development of energy storage materials by designing heterostructures with a porous structure.
过渡金属磷化物的实际应用受到充放电过程中较差的倍率性能和较大的体积变化的阻碍。为了解决这一问题,构建结合多孔碳骨架的金属磷化物异质结构是一种有望提供快速电荷转移动力学的策略。在此,通过同轴静电纺丝和低温磷化工艺制备了嵌入多孔碳纳米纤维中的异质CoP/FeP纳米颗粒(CoP/FeP@PCNFs)。将CoP/FeP@PCNFs用作钠离子电池的负极,可获得较大的可逆比容量(在0.05 A g-1时为459 mA h g-1)、优异的倍率性能(在10 A g-1时相对于0.05 A g-1的容量保持率为46.4%)和长期循环稳定性(在5 A g-1下1000次循环后为208 mA h g-1,容量保持率为73.5%)。借助多孔结构和异质结构,CoP/FeP@PCNF样品的电化学性能得到了极大改善。多孔结构可促进离子传输并适应体积膨胀。密度泛函理论计算证实,构建的异质结构可产生内建电场并促进Na+的反应动力学。这项工作通过设计具有多孔结构的异质结构为储能材料的未来发展提供了基本指导。