Suppr超能文献

使用文本挖掘工具在电子健康记录数据中识别纳洛酮给药。

Identifying naloxone administrations in electronic health record data using a text-mining tool.

机构信息

Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA.

Institute for Health Research, Kaiser Permanente Colorado, Aurora, Colorado, USA.

出版信息

Subst Abus. 2021;42(4):806-812. doi: 10.1080/08897077.2020.1856288. Epub 2020 Dec 15.

Abstract

Effective and efficient methods are needed to identify naloxone administrations within electronic health record (EHR) data to conduct overdose surveillance and research. The objective of this study was to develop and validate a text-mining tool to identify naloxone administrations in EHR data. Clinical notes stored in databases between January 2017 and March 2018 were used to iteratively develop a text-mining tool to identify naloxone administrations. The first iteration of the tool used broad search terms. Then, after reviewing clinical notes of overdose encounters, we developed a list of phrases that described naloxone administrations to inform iteration two. While validating iteration two, additional phrases were found, which were then added to inform the final iteration. The comparator was an administrative code query extracted from the EHR. Medical record review was used to identify true positives. The primary outcome was the positive predictive values (PPV) of the second iteration, final iteration, and administrative code query. Iteration two, the final iteration, and the administrative code had PPVs of 84.3% (95% confidence interval [CI] 78.6-89.0%), 83.8% (95% CI 78.6-88.2%), and 57.1% (95% CI 47.1-66.8%), respectively. Both iterations of the tool had a significantly higher PPV than the administrative code ( < 0.001). A text-mining tool improved the identification of naloxone administrations in EHR data from less than 60% with the administrative code to greater than 80% with both versions of the tool. Text-mining tools can inform the use of more sophisticated informatics methods, which often require significant time, resource, and expertise investment.

摘要

需要有效的方法来识别电子健康记录(EHR)数据中的纳洛酮给药情况,以便进行过量使用监测和研究。本研究的目的是开发和验证一种文本挖掘工具,以识别 EHR 数据中的纳洛酮给药情况。从 2017 年 1 月至 2018 年 3 月存储在数据库中的临床记录被用于迭代开发一种识别纳洛酮给药的文本挖掘工具。该工具的第一个迭代使用了广泛的搜索词。然后,在审查了过量使用的临床记录后,我们开发了一个描述纳洛酮给药的短语列表,以告知第二个迭代。在验证第二个迭代的同时,还发现了其他短语,然后将其添加到最终的迭代中。比较器是从 EHR 中提取的管理代码查询。医疗记录审查用于识别真阳性。主要结果是第二个迭代、最终迭代和管理代码查询的阳性预测值(PPV)。第二个迭代、最终迭代和管理代码的 PPV 分别为 84.3%(95%置信区间[CI]为 78.6-89.0%)、83.8%(95%CI 为 78.6-88.2%)和 57.1%(95%CI 为 47.1-66.8%)。该工具的两个迭代的 PPV 均显著高于管理代码(<0.001)。文本挖掘工具提高了 EHR 数据中纳洛酮给药的识别率,从使用管理代码的不足 60%提高到两个版本工具的 80%以上。文本挖掘工具可以为更复杂的信息学方法提供信息,而这些方法通常需要大量的时间、资源和专业知识投入。

相似文献

本文引用的文献

6
Medical informatics research trend analysis: A text mining approach.医学信息学研究趋势分析:一种文本挖掘方法。
Health Informatics J. 2018 Dec;24(4):432-452. doi: 10.1177/1460458216678443. Epub 2016 Dec 1.
9
Empirical advances with text mining of electronic health records.电子健康记录文本挖掘的实证进展。
BMC Med Inform Decis Mak. 2017 Aug 22;17(1):127. doi: 10.1186/s12911-017-0519-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验