Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, USA.
Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA.
Health Informatics J. 2019 Dec;25(4):1232-1243. doi: 10.1177/1460458217749883. Epub 2018 Jan 23.
Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.
结构产品标签采用了健康信息交换标准组织(Health Level Seven)认可的基于 XML 的文档标记标准,并被美国食品和药物管理局(US Food and Drug Administration)采用,作为交换医疗产品信息的一种机制。其当前的组织结构使得对其进行二次利用具有一定挑战性。我们使用了不良反应资源数据库(Side Effect Resource database)和每日医学(DailyMed)生成了 1159 个结构产品标签的对比数据集。我们使用基于事件的健康电子记录文本挖掘系统(Event-based Text-mining of Health Electronic Records system)处理了这些结构产品标签的不良反应部分,并评估了它提取和编码不良反应术语到监管活动医学词典首选术语(Medical Dictionary for Regulatory Activities Preferred Terms)的能力。然后,我们选择了一小部分(100 个)标签进行进一步分析。在这 100 个标签中,基于事件的健康电子记录文本挖掘的精确率和召回率分别为 81%和 92%。这项研究证明了基于事件的健康电子记录文本挖掘从结构产品标签中提取和编码不良反应术语的能力,这可能为多种药物流行病学任务提供支持。