Suppr超能文献

基于几何感知的对抗式点云生成。

Geometry-Aware Generation of Adversarial Point Clouds.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jun;44(6):2984-2999. doi: 10.1109/TPAMI.2020.3044712. Epub 2022 May 5.

Abstract

Machine learning models have been shown to be vulnerable to adversarial examples. While most of the existing methods for adversarial attack and defense work on the 2D image domain, a few recent attempts have been made to extend them to 3D point cloud data. However, adversarial results obtained by these methods typically contain point outliers, which are both noticeable and easy to defend against using the simple techniques of outlier removal. Motivated by the different mechanisms by which humans perceive 2D images and 3D shapes, in this paper we propose the new design of geometry-aware objectives, whose solutions favor (the discrete versions of) the desired surface properties of smoothness and fairness. To generate adversarial point clouds, we use a targeted attack misclassification loss that supports continuous pursuit of increasingly malicious signals. Regularizing the targeted attack loss with our proposed geometry-aware objectives results in our proposed method, Geometry-Aware Adversarial Attack ( GeoA). The results of GeoA tend to be more harmful, arguably harder to defend against, and of the key adversarial characterization of being imperceptible to humans. While the main focus of this paper is to learn to generate adversarial point clouds, we also present a simple but effective algorithm termed GeoA-IterNormPro, with Iterative Normal Projection (IterNorPro) that solves a new objective function GeoA, towards surface-level adversarial attacks via generation of adversarial point clouds. We quantitatively evaluate our methods on both synthetic and physical objects in terms of attack success rate and geometric regularity. For a qualitative evaluation, we conduct subjective studies by collecting human preferences from Amazon Mechanical Turk. Comparative results in comprehensive experiments confirm the advantages of our proposed methods. Our source codes are publicly available at https://github.com/Yuxin-Wen/GeoA3.

摘要

机器学习模型容易受到对抗样本的影响。虽然现有的大多数对抗攻击和防御方法都在 2D 图像领域进行,但是最近也有一些尝试将其扩展到 3D 点云数据。然而,这些方法得到的对抗结果通常包含点异常值,这些异常值不仅引人注目,而且很容易通过异常值去除等简单技术进行防御。受人类感知 2D 图像和 3D 形状的不同机制的启发,本文提出了新的几何感知目标设计,其解决方案有利于(平滑度和公平性等)所需曲面属性的离散版本。为了生成对抗性点云,我们使用有针对性的攻击错误分类损失,该损失支持对越来越恶意的信号进行连续追求。用我们提出的几何感知目标对有针对性的攻击损失进行正则化,得到了我们提出的方法,即几何感知对抗攻击(GeoA)。GeoA 的结果往往更具危害性,可以说更难防御,并且具有人类难以察觉的关键对抗特征。虽然本文的主要重点是学习生成对抗性点云,但我们还提出了一种简单但有效的算法,称为 GeoA-IterNormPro,它使用迭代法求解新的目标函数 GeoA,通过生成对抗性点云来实现表面级别的对抗攻击。我们根据攻击成功率和几何正则性在合成和物理物体上对我们的方法进行了定量评估。为了进行定性评估,我们通过从亚马逊 Mechanical Turk 收集人类偏好来进行主观研究。综合实验的比较结果证实了我们提出的方法的优势。我们的源代码可在 https://github.com/Yuxin-Wen/GeoA3 上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验