National Council of Scientific Research.
Translational Immuno Oncology Lab at the Institute of Biology and Experimental Medicine in Buenos Aires, Argentina.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa317.
The accurate quantification of tumor-infiltrating immune cells turns crucial to uncover their role in tumor immune escape, to determine patient prognosis and to predict response to immune checkpoint blockade. Current state-of-the-art methods that quantify immune cells from tumor biopsies using gene expression data apply computational deconvolution methods that present multicollinearity and estimation errors resulting in the overestimation or underestimation of the diversity of infiltrating immune cells and their quantity. To overcome such limitations, we developed MIXTURE, a new ν-support vector regression-based noise constrained recursive feature selection algorithm based on validated immune cell molecular signatures. MIXTURE provides increased robustness to cell type identification and proportion estimation, outperforms the current methods, and is available to the wider scientific community. We applied MIXTURE to transcriptomic data from tumor biopsies and found relevant novel associations between the components of the immune infiltrate and molecular subtypes, tumor driver biomarkers, tumor mutational burden, microsatellite instability, intratumor heterogeneity, cytolytic score, programmed cell death ligand 1 expression, patients' survival and response to anti-cytotoxic T-lymphocyte-associated antigen 4 and anti-programmed cell death protein 1 immunotherapy.
准确量化肿瘤浸润免疫细胞对于揭示其在肿瘤免疫逃逸中的作用、确定患者预后和预测免疫检查点阻断反应至关重要。目前,使用基因表达数据定量肿瘤活检中免疫细胞的最先进方法应用了计算去卷积方法,这些方法存在多重共线性和估计误差,导致浸润免疫细胞的多样性及其数量被高估或低估。为了克服这些限制,我们开发了 MIXTURE,这是一种基于已验证免疫细胞分子特征的新的 ν-支持向量回归的基于噪声约束的递归特征选择算法。MIXTURE 提高了细胞类型识别和比例估计的稳健性,优于现有方法,并可供更广泛的科学界使用。我们将 MIXTURE 应用于肿瘤活检的转录组数据,发现了免疫浸润成分与分子亚型、肿瘤驱动生物标志物、肿瘤突变负担、微卫星不稳定性、肿瘤内异质性、细胞毒性评分、程序性细胞死亡配体 1 表达、患者生存和对抗细胞毒性 T 淋巴细胞相关抗原 4 和抗程序性细胞死亡蛋白 1 免疫治疗反应之间的相关新关联。