文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

第一性原理计算揭示 Ni、Fe 含一氧化碳脱氢酶结合和释放 CO 到/从 C 簇的关键立体电子特征。

First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO to/from the C-Cluster.

机构信息

Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.

Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.

出版信息

Inorg Chem. 2021 Jan 4;60(1):387-402. doi: 10.1021/acs.inorgchem.0c03034. Epub 2020 Dec 15.


DOI:10.1021/acs.inorgchem.0c03034
PMID:33321036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7872322/
Abstract

In view of the depletion of fossil fuel reserves and climatic effects of greenhouse gas emissions, Ni,Fe-containing carbon monoxide dehydrogenase (Ni-CODH) enzymes have attracted increasing interest in recent years for their capability to selectively catalyze the reversible reduction of CO to CO (CO + 2H + 2e CO + HO). The possibility of converting the greenhouse gas CO into useful materials that can be used as synthetic building blocks or, remarkably, as carbon fuels makes Ni-CODH a very promising target for reverse-engineering studies. In this context, in order to provide insights into the chemical principles underlying the biological catalysis of CO activation and reduction, quantum mechanics calculations have been carried out in the framework of density functional theory (DFT) on different-sized models of the Ni-CODH active site. With the aim of uncovering which stereoelectronic properties of the active site (known as the C-cluster) are crucial for the efficient binding and release of CO, different coordination modes of CO to different forms and redox states of the C-cluster have been investigated. The results obtained from this study highlight the key role of the protein environment in tuning the reactivity and the geometry of the C-cluster. In particular, the protonation state of His93 is found to be crucial for promoting the binding or the dissociation of CO. The oxidation state of the C-cluster is also shown to be critical. CO binds to C according to a dissociative mechanism (i.e., CO binds to the C-cluster after the release of possible ligands from Fe) when His93 is doubly protonated. CO can also bind noncatalytically to C according to an associative mechanism (i.e., CO binding is preceded by the binding of HO to Fe). Conversely, CO dissociates when His93 is singly protonated and the C-cluster is oxidized at least to the C redox state.

摘要

鉴于化石燃料储量的枯竭和温室气体排放的气候影响,近年来,含有 Ni、Fe 的一氧化碳脱氢酶(Ni-CODH)因其能够选择性地催化 CO 可逆还原为 CO(CO + 2H + 2e → CO + HO)而引起了越来越多的关注。将温室气体 CO 转化为有用的物质,这些物质可用作合成建筑块,或者更值得注意的是,用作碳燃料,这使得 Ni-CODH 成为反向工程研究的一个非常有前途的目标。在这种情况下,为了深入了解生物催化 CO 活化和还原的化学原理,我们在密度泛函理论(DFT)框架内对 Ni-CODH 活性位点的不同大小模型进行了量子力学计算。为了揭示活性位点(称为 C 簇)的哪些立体电子性质对于 CO 的有效结合和释放至关重要,我们研究了 CO 与 C 簇的不同形式和氧化还原态的不同配位模式。这项研究的结果强调了蛋白质环境在调节 C 簇的反应性和几何形状方面的关键作用。特别是,发现 His93 的质子化状态对于促进 CO 的结合或解离至关重要。C 簇的氧化态也被证明是关键的。当 His93 双质子化时,CO 根据缔合机制(即 CO 在可能的配体从 Fe 释放后与 C 簇结合)结合到 C。CO 也可以根据缔合机制非催化性地结合到 C(即 CO 结合在 HO 结合到 Fe 之前进行)。相反,当 His93 单质子化且 C 簇至少被氧化到 C 氧化还原态时,CO 会解离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/7f7887323ba9/ic0c03034_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/f3d369c56b94/ic0c03034_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/6cd3dde8fde3/ic0c03034_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/0662fe3e8673/ic0c03034_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/fd8c2e7d3685/ic0c03034_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/8a378d06dcd5/ic0c03034_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/fd54fc33cd2c/ic0c03034_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/a44a9338ad30/ic0c03034_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/7f7887323ba9/ic0c03034_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/f3d369c56b94/ic0c03034_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/6cd3dde8fde3/ic0c03034_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/0662fe3e8673/ic0c03034_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/fd8c2e7d3685/ic0c03034_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/8a378d06dcd5/ic0c03034_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/fd54fc33cd2c/ic0c03034_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/a44a9338ad30/ic0c03034_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806b/7872322/7f7887323ba9/ic0c03034_0008.jpg

相似文献

[1]
First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO to/from the C-Cluster.

Inorg Chem. 2021-1-4

[2]
Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.

Biochemistry. 1996-6-25

[3]
Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase.

Science. 2007-11-30

[4]
A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization.

Curr Opin Chem Biol. 2010-12-2

[5]
New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster.

J Biol Inorg Chem. 2005-12

[6]
Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.

Met Ions Life Sci. 2014

[7]
CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2.

Biochemistry. 1998-7-14

[8]
Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster.

Science. 2001-8-17

[9]
Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase.

Elife. 2018-10-2

[10]
Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase.

J Am Chem Soc. 2004-5-5

引用本文的文献

[1]
Magnetic interactions between metal sites in complex enzymes.

J Biol Inorg Chem. 2025-8

[2]
Nickel model complexes to mimic carbon monoxide dehydrogenase reactions.

Chem Sci. 2024-12-13

[3]
Understanding the role of negative charge in the scaffold of an artificial enzyme for CO hydrogenation on catalysis.

J Biol Inorg Chem. 2024-9

[4]
Opportunities for Insight into the Mechanism of Efficient CO/CO Interconversion at a Nickel-Iron Cluster in CO Dehydrogenase.

Chem. 2024-6-13

[5]
Three-Coordinate Nickel and Metal-Metal Interactions in a Heterometallic Iron-Sulfur Cluster.

J Am Chem Soc. 2024-2-14

[6]
Synthesis, Spectroscopy, and Structure of [FeRu(μ-dithiolate)(CN)(CO)].

Inorg Chem. 2023-10-16

[7]
Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases.

Molecules. 2022-7-22

[8]
Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase.

Chem Rev. 2022-7-27

[9]
Residues surrounding the active centre of carbon monoxide dehydrogenase are key in converting [Formula: see text] to CO.

J Biol Inorg Chem. 2021-8

本文引用的文献

[1]
Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase.

Inorg Chem. 2019-5-29

[2]
New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals.

J Chem Theory Comput. 2014-8-12

[3]
How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO2 and NCO(-).

Angew Chem Int Ed Engl. 2015-4-29

[4]
Influence of key amino acid mutation on the active site structure and on folding in acetyl-CoA synthase: a theoretical perspective.

Chem Commun (Camb). 2015-5-18

[5]
The aerobic CO dehydrogenase from Oligotropha carboxidovorans.

J Biol Inorg Chem. 2015-3

[6]
Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase.

Chem Rev. 2014-4-23

[7]
Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.

Chem Rev. 2013-8-14

[8]
The performance of density functional based methods in the description of selected biological systems and processes.

Phys Chem Chem Phys. 2012-9-24

[9]
Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions.

Chemphyschem. 2011-11-23

[10]
n-Butyl isocyanide oxidation at the [NiFe4S4OH(x)] cluster of CO dehydrogenase.

J Biol Inorg Chem. 2011-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索