Anderson M E, Lindahl P A
Department of Chemistry, Texas A & M University, College Station 77843, USA.
Biochemistry. 1996 Jun 25;35(25):8371-80. doi: 10.1021/bi952902w.
CO dehydrogenases catalyze the reversible oxidation of CO to CO2, at an active site (called the C-cluster) composed of an Fe4S4 cube with what appears to be a 5-coordinate Fe (called FCII), linked to a Ni (Hu, Z., Spangler, N. J., Anderson, M. E., Xia, J., Ludden, P. W., Lindahl, P. A., & Münck, E. (1996) J. Am. Chem. Soc. 118, 830-845). During catalysis, electrons are transferred from the C-cluster to an [Fe4S4]2+/1+ electron-transfer cluster called the B-cluster. An S = 1/2 form of the C-cluster (called Cred1) converts to another S = 1/2 form (called Cred2) upon reduction with CO, at a rate well within the turnover frequency of the enzyme (Kumar, M., Lu, W.-P., Liu, L., & Ragsdale, S. W. (1993) J. Am. Chem. Soc. 115, 11646-11647). This suggests that the conversion is part of the catalytic mechanism. Dithionite is reported in this paper to effect this conversion as well, but at a much slower rate (kso = 5.3 x 10(-2) M-1 s-1 for dithionite vs 4.4 x 10(6) M-1 s-1 for CO). By contrast, dithionite reduces the oxidized B-cluster much faster, possibly within the turnover frequency of the enzyme. Dithionite apparently effects the Cred1/Cred2 conversion directly, rather than through an intermediate. The conversion rate varies with dithionite concentration. The Cred1/Cred2 conversion occurs at least 10(2) times faster in the presence of CO2 than in its absence. CO2 alters the g values of the gav = 1.82 signal, indicating that CO2 binds to a C-cluster-sensitive site at mild potentials. CN- inhibits CO oxidation by binding to FCII (Hu et al., 1996), and CO, CO2 in the presence of dithionite, or CS2 in dithionite accelerate CN- dissociation from this site (Anderson, M. E., & Lindahl, P. A. (1994) Biochemistry 33, 8702-8711). The effect of CO, CO2, and CS2 on CN- dissociation suggested that these molecules bind at a site (called the modulator) other than that to which CN- binds. The effects of CO2, CS2, CO, and dithionite on the Cred1/Cred2 conversion rate followed a similar pattern, suggesting that this rate is also influenced by modulator binding. Some batches of enzyme cannot convert to the Cred2 form using dithionite, but pretreatment with CO or CO2/dithionite effectively "cures" such batches of this disability. The results presented suggest that the Ni of the C-cluster is the modulator and the substrate binding site for CO/CO2. The inhibitor CS2 in the presence of dithionite also accelerates the decline of Cred1, leading first to an EPR-silent state of the C-cluster, and eventually to a state yielding an EPR signal with gav = 1.66. CS2 binding thus shares some resemblance to CO2 binding. Approximately 90% of the absorbance changes at 420 nm that occur when oxidized CODHCt is reduced by dithionite occur within 2 min at 10 degrees C. This absorbance change occurs in concert with the gav = 1.94 signal development. The remaining 10% of the A420 changes occur over the course of approximately 50 min, apparently coincident with the Cred1/Cred2 conversion. One possibility is that the conversion involves reduction of an (unidentified) Fe-S cluster. A three-state model of catalysis is proposed in which Cred1 binds and oxidizes CO, Cred2 is two electrons more reduced than Cred1 and is the state that binds and reduces CO2, and Cint is a one-electron-reduced state that is proposed to exist because of constraints imposed by the nature of the CO/CO2 reaction and the properties of the clusters involved in catalysis.
一氧化碳脱氢酶可催化一氧化碳可逆氧化为二氧化碳,反应发生在一个活性位点(称为C簇),该位点由一个Fe4S4立方体和一个看似五配位的铁(称为FCII)组成,与一个镍相连(Hu, Z., Spangler, N. J., Anderson, M. E., Xia, J., Ludden, P. W., Lindahl, P. A., & Münck, E. (1996) J. Am. Chem. Soc. 118, 830 - 845)。在催化过程中,电子从C簇转移到一个称为B簇的[Fe4S4]2+/1+电子转移簇。C簇的一种S = 1/2形式(称为Cred1)在用一氧化碳还原时会转化为另一种S = 1/2形式(称为Cred2),其速率完全在酶的周转频率范围内(Kumar, M., Lu, W.-P., Liu, L., & Ragsdale, S. W. (1993) J. Am. Chem. Soc. 115, 11646 - 11647)。这表明这种转化是催化机制的一部分。本文报道连二亚硫酸盐也能实现这种转化,但速率要慢得多(连二亚硫酸盐的kso = 5.3×10(-2) M-1 s-1,而一氧化碳的为4.4×10(6) M-1 s-1)。相比之下,连二亚硫酸盐还原氧化态的B簇要快得多,可能在酶的周转频率范围内。连二亚硫酸盐显然是直接影响Cred1/Cred2的转化,而不是通过中间体。转化速率随连二亚硫酸盐浓度而变化。在有二氧化碳存在的情况下,Cred1/Cred2的转化速度比没有二氧化碳时至少快10(2)倍。二氧化碳会改变gav = 1.82信号的g值,表明二氧化碳在温和电位下与C簇敏感位点结合。氰化物通过与FCII结合抑制一氧化碳氧化(Hu等人,1996),而一氧化碳、连二亚硫酸盐存在下的二氧化碳或连二亚硫酸盐中的二硫化碳会加速氰化物从该位点解离(Anderson, M. E., & Lindahl, P. A. (1994) Biochemistry 33, 8702 - 8711)。一氧化碳、二氧化碳和二硫化碳对氰化物解离的影响表明这些分子在一个不同于氰化物结合的位点(称为调节剂位点)结合。二氧化碳、二硫化碳、一氧化碳和连二亚硫酸盐对Cred1/Cred2转化速率的影响遵循类似模式,表明该速率也受调节剂结合的影响。某些批次的酶不能用连二亚硫酸盐转化为Cred2形式,但用一氧化碳或二氧化碳/连二亚硫酸盐预处理可有效“治愈”此类批次的这种缺陷。所呈现的结果表明,C簇的镍是调节剂以及一氧化碳/二氧化碳的底物结合位点。连二亚硫酸盐存在下的抑制剂二硫化碳也会加速Cred1的下降,首先导致C簇处于电子顺磁共振沉默状态,最终导致产生gav = 1.66电子顺磁共振信号的状态。因此,二硫化碳的结合与二氧化碳的结合有一些相似之处。当用连二亚硫酸盐还原氧化态的CODHCt时,在420 nm处约90%的吸光度变化在10℃下2分钟内发生。这种吸光度变化与gav = 1.94信号的出现同步。其余10%的A420变化在大约50分钟内发生,显然与Cred1/Cred2的转化同时发生。一种可能性是这种转化涉及一个(未鉴定的)铁硫簇的还原。提出了一种三态催化模型,其中Cred1结合并氧化一氧化碳,Cred2比Cred1多还原两个电子,是结合并还原二氧化碳的状态,而Cint是一种单电子还原状态,由于一氧化碳/二氧化碳反应的性质以及催化过程中涉及的簇的性质所施加的限制而被认为存在。