Suppr超能文献

一种基于数据驱动的研究体重在多种疾病中作用的方法:英国生物库中基于表型全基因组注册的病例对照研究。

A data-driven approach for studying the role of body mass in multiple diseases: a phenome-wide registry-based case-control study in the UK Biobank.

机构信息

Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.

Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, SA, Australia; Department of Pharmacology, School of Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia.

出版信息

Lancet Digit Health. 2019 Jul;1(3):e116-e126. doi: 10.1016/S2589-7500(19)30028-7. Epub 2019 Jun 27.

Abstract

BACKGROUND

Mendelian randomisation allows for the testing of causal effects in situations where clinical trials are challenging to do. In this hypothesis-free, data-driven phenome-wide association study (PheWAS), we sought to assess possible associations of high body-mass index (BMI) with multiple disease outcomes.

METHODS

For this registry-based case-control PheWAS, we used genome-wide data available from the UK Biobank to construct a genetic risk score of 76 variants related to BMI. Eligible UK Biobank participants were aged 37-73 years during recruitment, were white British, were unrelated to each other, and had available genetic information. Disease outcomes from these participants were mapped to a phenotype code (phecode). Participants with a phecode of interest were recoded as cases, whereas participants without a phecode of interest or any codes under a parent phecode were classified as controls. We did a PheWAS to analyse possible associations between the BMI genetic risk score and a range of disease outcomes. Disease associations passing stringent correction for multiple testing (Bonferroni corrected threshold p<5·4 × 10, false discovery rate corrected p<0·0074) were assessed for causal association with use of inverse-variance weighted mendelian randomisation. We did sensitivity analyses to assess pleiotropy and stability of estimation with use of weighted median, weighted mode, Egger regression, and mendelian randomisation pleiotropy residual sum and outlier methods.

FINDINGS

Our study population comprised 337 536 UK Biobank participants, and analyses were done for 925 unique phecodes from 17 different disease categories. After Bonferroni correction, PheWAS identified that BMI genetic risk score was associated with hospital-diagnosed obesity and 58 other outcomes; 30 distinct disease associations were supported by the mendelian randomisation analyses. 30 distinct disease associations were supported by the mendelian randomisation analyses. In inverse-variance weighted mendelian randomisation, genetically determined BMI was associated with endocrine disorders (odds ratio per one SD or 4·1 kg/m higher BMI 2·72, 95% CI 2·33-3·29 for type 2 diabetes; 2·11, 1·62-2·76 for type 1 diabetes; and 1·46, 1·25-1·70 for hypothyroidism), circulatory diseases (1·96, 1·53-2·51 for phlebitis and thrombophlebitis; 1·89, 1·39-2·57 for cardiomegaly; 1·68, 1·35-2·09 for congestive heart failure; 1·55, 1·37-1·76 for hypertension; 1·31, 1·13-1·52 for ischaemic heart disease; and 1·25, 1·14-1·37 for cardiac dysrhythmias), and inflammatory or dermatological conditions (2·00, 1·72-2·23 for superficial cellulitis and abscess; 3·37, 2·17-5·25 for chronic ulcers of leg and foot; 4·99, 2·54-9·82 for gangrene; and 2·24, 1·53-3·28 for atopy). Mendelian randomisation analyses provided further support for a causal effect of BMI on renal failure, osteoarthrosis, neurological (insomnia and peripheral nerve disorders) and respiratory diseases (asthma and chronic bronchitis), structural problems (hernias and knee derangement), and chemotherapy treatment. Mendelian randomisation with Egger regression produced consistently wider CIs compared with those of other methods. 26 of 72 distinct diseases detected under false discovery rate correction produced consistent estimates across at least four mendelian randomisation methods, and consistent evidence across all five approaches was obtained for 14 diseases.

INTERPRETATION

Our data-driven approach identified a range of diseases as possibly affected by high BMI. This population-level screening approximated the accumulated consequences of high BMI, whereas the true effects might be more complex and vary by life stage. Our results highlight the importance of obesity prevention and effective management of obesity-related comorbidities.

FUNDING

National Health and Medical Research Council of Australia.

摘要

背景

孟德尔随机化允许在临床试验难以进行的情况下测试因果效应。在这个无假设、基于数据的全基因组关联研究(PheWAS)中,我们试图评估高体重指数(BMI)与多种疾病结果之间可能存在的关联。

方法

在这个基于登记的病例对照 PheWAS 中,我们使用来自英国生物库的全基因组数据构建了与 BMI 相关的 76 个变异体的遗传风险评分。符合条件的英国生物库参与者在招募时年龄在 37-73 岁之间,是白种英国人,彼此之间没有关系,并且有可用的遗传信息。这些参与者的疾病结果被映射到表型码(phecode)。有 phecode 感兴趣的参与者被重新编码为病例,而没有 phecode 感兴趣或任何在父 phecode 下的代码的参与者被归类为对照。我们进行了 PheWAS 分析,以分析 BMI 遗传风险评分与一系列疾病结果之间可能存在的关联。通过使用逆方差加权孟德尔随机化分析,对通过严格的多重检验校正(Bonferroni 校正阈值 p<5.4×10,错误发现率校正 p<0.0074)的疾病关联进行因果关联评估。我们进行了敏感性分析,以使用加权中位数、加权模式、Egger 回归和孟德尔随机化偏倚残差和离群值方法评估加权中位数、加权模式、Egger 回归和孟德尔随机化偏倚残差和离群值方法的多效性和估计稳定性。

结果

我们的研究人群包括 337 536 名英国生物库参与者,对来自 17 个不同疾病类别的 925 个独特的 phecode 进行了分析。经过 Bonferroni 校正,PheWAS 发现 BMI 遗传风险评分与医院诊断的肥胖和其他 58 种疾病结果相关;30 种不同的疾病关联得到了孟德尔随机化分析的支持。在逆方差加权孟德尔随机化中,遗传决定的 BMI 与内分泌紊乱(每增加一个标准差或 4.1kg/m2 的 BMI 的比值比为 2.72,95%CI 2.33-3.29,用于 2 型糖尿病;2.11,1.62-2.76,用于 1 型糖尿病;1.46,1.25-1.70,用于甲状腺功能减退)、循环系统疾病(1.96,1.53-2.51,用于静脉炎和血栓性静脉炎;1.89,1.39-2.57,用于心脏扩大;1.68,1.35-2.09,用于充血性心力衰竭;1.55,1.37-1.76,用于高血压;1.31,1.13-1.52,用于缺血性心脏病;1.25,1.14-1.37,用于心律失常)以及炎症或皮肤病(2.00,1.72-2.23,用于浅表蜂窝织炎和脓肿;3.37,2.17-5.25,用于下肢和足部慢性溃疡;4.99,2.54-9.82,用于坏疽;2.24,1.53-3.28,用于特应性)有关。孟德尔随机化分析进一步支持 BMI 对肾衰竭、骨关节炎、神经(失眠和周围神经疾病)和呼吸疾病(哮喘和慢性支气管炎)、结构问题(疝气和膝关节紊乱)以及化疗治疗的因果作用。Egger 回归的孟德尔随机化分析产生的一致性指数(CI)始终比其他方法宽。在错误发现率校正下检测到的 72 种不同疾病中的 26 种,在至少四种孟德尔随机化方法中产生了一致的估计值,在所有五种方法中都获得了 14 种疾病的一致证据。

解释

我们的数据驱动方法确定了一系列可能受高 BMI 影响的疾病。这种人群水平的筛查近似于高 BMI 的累积后果,而真正的影响可能更复杂,并且因生命阶段而异。我们的结果强调了预防肥胖和有效管理肥胖相关并发症的重要性。

资金

澳大利亚国家卫生和医学研究理事会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验