School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
Phys Chem Chem Phys. 2021 Jan 6;23(1):536-553. doi: 10.1039/d0cp05056c.
Photoacoustic spectroscopy (PAS) is a sensitive technique for the detection of trace gases and aerosols and measurements of their absorption coefficients. The accuracy of such measurements is often governed by the fidelity of the PAS instrument calibration. Gas samples laden with O3 of a known or independently measured absorption coefficient are a convenient and commonplace route to calibration of PAS instruments operating at visible wavelengths (λ), yet the accuracy of such calibrations remains unclear. Importantly, the photoacoustic detection of O3 in the Chappuis band (λ ∼ 400-700 nm) depends strongly on the timescales for energy transfer from the nascent photoproducts O(3P) and O2(X, v > 0) to translational motion of bath gas species. Significant uncertainties remain concerning the dependence of these timescales on both the sample pressure and the bath gas composition. Here, we demonstrate accurate characterisation of microphone response function dependencies on pressure using a speaker transducer to excite resonant acoustic modes of our photoacoustic cells. These corrections enable measurements of photoacoustic response amplitudes (also referred to as PAS sensitivities) and phase shifts with variation in static pressure and bath gas composition, at discrete visible wavelengths spanning the Chappuis band. We develop and fit a photochemical relaxation model to these measurements to retrieve the associated variations in the aforementioned relaxation timescales for O(3P) and O2(X, v > 0). These timescales enable a full assessment of the accuracy of PAS calibrations using O3-laden gas samples, dependent on the sample pressure, bath gas composition and PAS laser modulation frequency.
光声光谱(PAS)是一种用于检测痕量气体和气溶胶及其吸收系数的灵敏技术。此类测量的准确性通常取决于 PAS 仪器校准的保真度。充满已知或独立测量吸收系数的臭氧气体的气体样品是校准在可见波长(λ)下运行的 PAS 仪器的一种方便且常见的方法,但此类校准的准确性仍不清楚。重要的是,臭氧在 Chappuis 带(λ∼400-700nm)中的光声检测强烈依赖于初生光产物 O(3P)和 O2(X,v>0)与浴气物种的平移运动之间能量转移的时间尺度。这些时间尺度对样品压力和浴气组成的依赖性仍然存在很大的不确定性。在这里,我们使用扬声器换能器来激励我们的光声细胞的共振声学模式,证明了对麦克风响应函数随压力变化的准确描述。这些校正使得可以在离散的可见波长范围内(涵盖 Chappuis 带),测量光声响应幅度(也称为 PAS 灵敏度)和相位随静态压力和浴气组成的变化。我们开发并拟合了光化学反应弛豫模型,以对这些测量结果进行分析,以获取 O(3P)和 O2(X,v>0)的上述弛豫时间的相关变化。这些时间尺度使我们能够根据样品压力、浴气组成和 PAS 激光调制频率,全面评估使用充满臭氧气体的样品进行 PAS 校准的准确性。