Suppr超能文献

预后模型将成为自身成功的受害者,除非……

Prognostic models will be victims of their own success, unless….

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA.

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Am Med Inform Assoc. 2019 Dec 1;26(12):1645-1650. doi: 10.1093/jamia/ocz145.

Abstract

Predictive analytics have begun to change the workflows of healthcare by giving insight into our future health. Deploying prognostic models into clinical workflows should change behavior and motivate interventions that affect outcomes. As users respond to model predictions, downstream characteristics of the data, including the distribution of the outcome, may change. The ever-changing nature of healthcare necessitates maintenance of prognostic models to ensure their longevity. The more effective a model and intervention(s) are at improving outcomes, the faster a model will appear to degrade. Improving outcomes can disrupt the association between the model's predictors and the outcome. Model refitting may not always be the most effective response to these challenges. These problems will need to be mitigated by systematically incorporating interventions into prognostic models and by maintaining robust performance surveillance of models in clinical use. Holistically modeling the outcome and intervention(s) can lead to resilience to future compromises in performance.

摘要

预测分析开始通过洞察我们未来的健康状况来改变医疗保健的工作流程。将预测模型部署到临床工作流程中应该会改变行为,并促使采取影响结果的干预措施。随着用户对模型预测的响应,数据的下游特征(包括结果的分布)可能会发生变化。医疗保健的不断变化性质需要维护预测模型以确保其长期存在。模型和干预措施在改善结果方面越有效,模型看起来降级的速度就越快。改善结果可能会破坏模型预测因子与结果之间的关联。模型重新拟合并不总是应对这些挑战的最有效方法。通过系统地将干预措施纳入预测模型并对临床使用中的模型进行稳健的性能监测,可以缓解这些问题。全面建模结果和干预措施可以提高对未来性能下降的适应能力。

相似文献

1
Prognostic models will be victims of their own success, unless….
J Am Med Inform Assoc. 2019 Dec 1;26(12):1645-1650. doi: 10.1093/jamia/ocz145.
3
The number needed to benefit: estimating the value of predictive analytics in healthcare.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1655-1659. doi: 10.1093/jamia/ocz088.
4
Predictive analytics in health care: how can we know it works?
J Am Med Inform Assoc. 2019 Dec 1;26(12):1651-1654. doi: 10.1093/jamia/ocz130.
5
A nonparametric updating method to correct clinical prediction model drift.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1448-1457. doi: 10.1093/jamia/ocz127.
6
Predicting Future Perceived Wellness in Professional Soccer: The Role of Preceding Load and Wellness.
Int J Sports Physiol Perform. 2019 Sep 1;14(8):1074-1080. doi: 10.1123/ijspp.2017-0864.
8
Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome.
BMC Med Inform Decis Mak. 2019 Feb 18;19(1):33. doi: 10.1186/s12911-019-0747-6.
9
Using predictive analytics and big data to optimize pharmaceutical outcomes.
Am J Health Syst Pharm. 2017 Sep 15;74(18):1494-1500. doi: 10.2146/ajhp161011.

引用本文的文献

1
Challenges in the Postmarket Surveillance of Clinical Prediction Models.
NEJM AI. 2025 May;2(5). doi: 10.1056/aip2401116. Epub 2025 Apr 24.
2
Artificial intelligence for cardiac imaging is ready for widespread clinical use: Pro Con debate AI for cardiac imaging.
BJR Open. 2025 Jun 6;7(1):tzaf015. doi: 10.1093/bjro/tzaf015. eCollection 2025 Jan.
3
Monitoring strategies for continuous evaluation of deployed clinical prediction models.
J Biomed Inform. 2025 Aug;168:104854. doi: 10.1016/j.jbi.2025.104854. Epub 2025 Jun 5.
4
When accurate prediction models yield harmful self-fulfilling prophecies.
Patterns (N Y). 2025 Apr 11;6(4):101229. doi: 10.1016/j.patter.2025.101229.
5
Understanding the evidence for artificial intelligence in healthcare.
BMJ Qual Saf. 2025 Jun 19;34(7):421-424. doi: 10.1136/bmjqs-2025-018559.
6
The early warning paradox.
NPJ Digit Med. 2025 Feb 3;8(1):81. doi: 10.1038/s41746-024-01408-x.
7
Proximity to Practice: The Role of Technology in the Next Era of Assessment.
Perspect Med Educ. 2024 Dec 26;13(1):646-653. doi: 10.5334/pme.1272. eCollection 2024.
8
Improving survival models in healthcare: a novel matching approach.
Res Sq. 2024 Dec 12:rs.3.rs-5467577. doi: 10.21203/rs.3.rs-5467577/v1.
9
Monitoring performance of clinical artificial intelligence in health care: a scoping review.
JBI Evid Synth. 2024 Dec 1;22(12):2423-2446. doi: 10.11124/JBIES-24-00042.
10
Development and assessment of a machine learning tool for predicting emergency admission in Scotland.
NPJ Digit Med. 2024 Oct 23;7(1):277. doi: 10.1038/s41746-024-01250-1.

本文引用的文献

1
Protecting Life While Preserving Liberty: Ethical Recommendations for Suicide Prevention With Artificial Intelligence.
Front Psychiatry. 2018 Dec 3;9:650. doi: 10.3389/fpsyt.2018.00650. eCollection 2018.
2
The Effect Of The Hospital Readmissions Reduction Program On Readmission And Observation Stay Rates For Heart Failure.
Health Aff (Millwood). 2018 Oct;37(10):1632-1639. doi: 10.1377/hlthaff.2018.0064.
3
Clinical Implications and Challenges of Artificial Intelligence and Deep Learning.
JAMA. 2018 Sep 18;320(11):1107-1108. doi: 10.1001/jama.2018.11029.
5
The accuracy, fairness, and limits of predicting recidivism.
Sci Adv. 2018 Jan 17;4(1):eaao5580. doi: 10.1126/sciadv.aao5580. eCollection 2018 Jan.
7
Studying de-implementation in health: an analysis of funded research grants.
Implement Sci. 2017 Dec 4;12(1):144. doi: 10.1186/s13012-017-0655-z.
8
Beyond discrimination: A comparison of calibration methods and clinical usefulness of predictive models of readmission risk.
J Biomed Inform. 2017 Dec;76:9-18. doi: 10.1016/j.jbi.2017.10.008. Epub 2017 Oct 24.
9
Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology.
Clin Infect Dis. 2018 Jan 6;66(1):149-153. doi: 10.1093/cid/cix731.
10
Change-Point Detection Method for Clinical Decision Support System Rule Monitoring.
Artif Intell Med Conf Artif Intell Med (2005-). 2017 Jun;10259:126-135. doi: 10.1007/978-3-319-59758-4_14. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验