Martínez-Ratón Yuri, Velasco Enrique
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain.
Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049, Madrid, Spain.
Phys Rev E. 2020 Nov;102(5-1):052128. doi: 10.1103/PhysRevE.102.052128.
Using density-functional theory we theoretically study the orientational properties of uniform phases of hard kites-two isosceles triangles joined by their common base. Two approximations are used: scaled particle theory and a new approach that better approximates third virial coefficients of two-dimensional hard particles. By varying some of their geometrical parameters, kites can be transformed into squares, rhombuses, triangles, and also very elongated particles, even reaching the hard-needle limit. Thus, a fluid of hard kites, depending on the particle shape, can stabilize isotropic, nematic, tetratic, and triatic phases. Different phase diagrams are calculated, including those of rhombuses, and kites with two of their equal interior angles fixed to 90^{∘}, 60^{∘}, and 75^{∘}. Kites with one of their unequal angles fixed to 72^{∘}, which have been recently studied via Monte Carlo simulations, are also considered. We find that rhombuses and kites with two equal right angles and not too large anisometry stabilize the tetratic phase but the latter stabilize it to a much higher degree. By contrast, kites with two equal interior angles fixed to 60^{∘} stabilize the triatic phase to some extent, although it is very sensitive to changes in particle geometry. Kites with the two equal interior angles fixed to 75^{∘} have a phase diagram with both tetratic and triatic phases, but we show the nonexistence of a particle shape for which both phases are stable at different densities. Finally, the success of the new theory in the description of orientational order in kites is shown by comparing with Monte Carlo simulations for the case where one of the unequal angles is fixed to 72^{∘}. These particles also present a phase diagram with stable tetratic and triatic phases.
利用密度泛函理论,我们从理论上研究了硬风筝(两个等腰三角形通过公共底边相连)均匀相的取向性质。我们采用了两种近似方法:标度粒子理论和一种能更好地近似二维硬粒子第三维里系数的新方法。通过改变风筝的一些几何参数,风筝可以转变为正方形、菱形、三角形,甚至是非常细长的粒子,甚至能达到硬针极限。因此,硬风筝流体根据粒子形状可以稳定各向同性相、向列相、四方相和三角相。我们计算了不同的相图,包括菱形以及两个相等内角固定为90°、60°和75°的风筝的相图。还考虑了其中一个不等角固定为72°的风筝,最近通过蒙特卡罗模拟对其进行了研究。我们发现,菱形以及两个相等直角且各向异性不太大的风筝能稳定四方相,但后者对四方相的稳定程度要高得多。相比之下,两个相等内角固定为60°的风筝在一定程度上能稳定三角相,尽管它对粒子几何形状的变化非常敏感。两个相等内角固定为75°的风筝有一个同时包含四方相和三角相的相图,但我们表明不存在一种粒子形状能使这两个相在不同密度下都稳定。最后通过与不等角之一固定为72°的情况的蒙特卡罗模拟结果进行比较,展示了新理论在描述风筝取向有序方面的成功。这些粒子也呈现出具有稳定四方相和三角相的相图。