Nimmo H G, Borthwick A C, el-Mansi E M, Holms W H, MacKintosh C, Nimmo G A
Department of Biochemistry, University of Glasgow, U.K.
Biochem Soc Symp. 1987;54:93-101.
During growth of Escherichia coli on acetate, the glyoxylate bypass supplies the precursors needed for biosynthesis. The glyoxylate bypass enzyme isocitrate lyase competes with the citric acid cycle enzyme isocitrate dehydrogenase for the available isocitrate. We have studied the control of metabolic flux at this branchpoint by examining the regulatory properties of the enzymes concerned. Isocitrate dehydrogenase is controlled by reversible phosphorylation catalysed by a bifunctional kinase/phosphatase whose activities are regulated by isocitrate, biosynthetic precursors and adenine nucleotides. The flux through isocitrate lyase is mainly controlled by the intracellular concentration of isocitrate. The phosphorylation system responds to the availability of energy and precursors and maintains isocitrate at a concentration high enough to sustain the flux through the glyoxylate bypass necessary for biosynthesis.
在大肠杆菌利用乙酸盐生长的过程中,乙醛酸循环支路提供生物合成所需的前体物质。乙醛酸循环支路的酶异柠檬酸裂解酶与柠檬酸循环的酶异柠檬酸脱氢酶竞争可用的异柠檬酸。我们通过研究相关酶的调节特性,对这个分支点处的代谢通量控制进行了研究。异柠檬酸脱氢酶受一种双功能激酶/磷酸酶催化的可逆磷酸化作用控制,该激酶/磷酸酶的活性受异柠檬酸、生物合成前体和腺嘌呤核苷酸调节。通过异柠檬酸裂解酶的通量主要受细胞内异柠檬酸浓度控制。磷酸化系统对能量和前体物质的可用性做出反应,并将异柠檬酸维持在足够高的浓度,以维持生物合成所需的通过乙醛酸循环支路的通量。