Suppr超能文献

F-FDG PET/CT指标与接受诱导化疗后序贯新辅助放化疗的食管癌患者的病理反应相关。

F-FDG PET/CT Metrics Are Correlated to the Pathological Response in Esophageal Cancer Patients Treated With Induction Chemotherapy Followed by Neoadjuvant Chemo-Radiotherapy.

作者信息

Simoni Nicola, Rossi Gabriella, Benetti Giulio, Zuffante Michele, Micera Renato, Pavarana Michele, Guariglia Stefania, Zivelonghi Emanuele, Mengardo Valentina, Weindelmayer Jacopo, Giacopuzzi Simone, de Manzoni Giovanni, Cavedon Carlo, Mazzarotto Renzo

机构信息

Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy.

Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy.

出版信息

Front Oncol. 2020 Nov 27;10:599907. doi: 10.3389/fonc.2020.599907. eCollection 2020.

Abstract

BACKGROUND AND OBJECTIVE

The aim of this study was to assess the ability of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (F-FDG PET/CT) to provide functional information useful in predicting pathological response to an intensive neoadjuvant chemo-radiotherapy (nCRT) protocol for both esophageal squamous cell carcinoma (SCC) and adenocarcinoma (ADC) patients.

MATERIAL AND METHODS

Esophageal carcinoma (EC) patients, treated in our Center between 2014 and 2018, were retrospectively reviewed. The nCRT protocol schedule consisted of an induction phase of weekly administered docetaxel, cisplatin, and 5-fluorouracil (TCF) for 3 weeks, followed by a concomitant phase of weekly TCF for 5 weeks with concurrent radiotherapy (50-50.4 Gy in 25-28 fractions). Three F-FDG PET/CT scans were performed: before (PET) and after (PET) induction chemotherapy (IC), and prior to surgery (PET). Correlation between PET parameters [maximum and mean standardized uptake value (SUV and SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)], radiomic features and tumor regression grade (TGR) was investigated.

RESULTS

Fifty-four patients (35 ADC, 19 SCC; 48 cT3/4; 52 cN+) were eligible for the analysis. Pathological response to nCRT was classified as major (TRG1-2, 41/54, 75.9%) or non-response (TRG3-4, 13/54, 24.1%). A major response was statistically correlated with SCC subtype (p = 0.02) and smaller tumor length (p = 0.03). MTV and TLG measured prior to IC (PET) were correlated to TRG1-2 response (p = 0.02 and p = 0.02, respectively). After IC (PET), SUV and TLG correlated with major response (p = 0.03 and p = 0.04, respectively). No significance was detected when relative changes of metabolic parameters between PET and PET were evaluated. At textural quantitative analysis, three independent radiomic features extracted from PET images ([JointEnergy and InverseDifferenceNormalized of GLCM and LowGrayLevelZoneEmphasis of GLSZM) were statistically correlated with major response (p < 0.0002).

CONCLUSIONS

F-FDG PET/CT traditional metrics and textural features seem to predict pathologic response (TRG) in EC patients treated with induction chemotherapy followed by neoadjuvant chemo-radiotherapy. Further investigations are necessary in order to obtain a reliable predictive model to be used in the clinical practice.

摘要

背景与目的

本研究旨在评估氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)提供功能信息的能力,这些信息有助于预测食管鳞状细胞癌(SCC)和腺癌(ADC)患者对强化新辅助放化疗(nCRT)方案的病理反应。

材料与方法

回顾性分析2014年至2018年在本中心接受治疗的食管癌(EC)患者。nCRT方案包括诱导期,每周给予多西他赛、顺铂和5-氟尿嘧啶(TCF),共3周,随后是同步期,每周给予TCF 5周并同步放疗(25-28次分割,剂量为50-50.4 Gy)。进行了三次F-FDG PET/CT扫描:诱导化疗(IC)前(PET)、诱导化疗后(PET)以及手术前(PET)。研究了PET参数[最大和平均标准化摄取值(SUVmax和SUVmean)、代谢肿瘤体积(MTV)和总病变糖酵解(TLG)]、影像组学特征与肿瘤退缩分级(TGR)之间的相关性。

结果

54例患者(35例ADC,19例SCC;48例cT3/4;52例cN+)符合分析条件。nCRT的病理反应分为主要反应(TRG1-2,41/54,75.9%)或无反应(TRG3-4,13/54,24.1%)。主要反应与SCC亚型(p = 0.02)和较短的肿瘤长度(p = 0.03)具有统计学相关性。IC前(PET)测量的MTV和TLG与TRG1-2反应相关(分别为p = 0.02和p = 0.02)。IC后(PET),SUVmax和TLG与主要反应相关(分别为p = 0.03和p = 0.04)。评估PET与PET之间代谢参数的相对变化时未发现显著差异。在纹理定量分析中,从PET图像中提取的三个独立影像组学特征(灰度共生矩阵的联合能量和逆差归一化以及灰度行程长度矩阵的低灰度级区域强调)与主要反应具有统计学相关性(p < 0.0002)。

结论

F-FDG PET/CT的传统指标和纹理特征似乎可以预测接受诱导化疗后再进行新辅助放化疗的EC患者的病理反应(TRG)。为了获得可用于临床实践的可靠预测模型,还需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b1/7729075/6f25cd011355/fonc-10-599907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验