Suppr超能文献

延长水热法处理对多晶LiNiMnCoO正极粉末结构、化学性质及性能的影响

Effects of Extended Aqueous Processing on Structure, Chemistry, and Performance of Polycrystalline LiNiMnCoO Cathode Powders.

作者信息

Azhari Luqman, Zhou Xiangyu, Sousa Bryer, Yang Zhenzhen, Gao Guanhui, Wang Yan

机构信息

Department of Materials Science and Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States.

Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 30;12(52):57963-57974. doi: 10.1021/acsami.0c20105. Epub 2020 Dec 17.

Abstract

The prospect of aqueous processing of LiNiMnCoO (NMC) cathodes has significant appeal to battery manufacturers for the reduction in materials cost, toxicological risk, and environmental impact compared to conventional -methyl-2-pyrrolidone (NMP)-based processing. However, the effects of aqueous processing of NMC powders at industrial timescales are not well studied, with prior studies mostly focusing on relatively brief water washing processes. In this work, we investigate the bulk and surface impacts of extended aqueous processing of polycrystalline NMC powders with different compositions. We demonstrate that at timescales of several hours, polycrystalline NMC is susceptible to intergranular fracture, with the severity of fracture scaling with the NMC nickel content. While bulk crystallinity and composition are unchanged, surface sensitive techniques such as X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) indicate that the exposure of water leads to a level of delithiation, nickel reduction, and reconstruction from the layered to rock-salt structure at the surface of individual grains. Dynamic single NMC microparticle compression testing suggests that the resulting mechanical stresses weaken the integrity of the polycrystalline particle and increases susceptibility of intergranular fracture. The initially degraded surfaces along with the increased surface area lead to faster capacity fade and impedance growth during electrochemical cycling. From this work, it is demonstrated that NMC powders require surface or grain boundary modifications to make industrial-scale aqueous cathode processing viable, especially for next-generation nickel-rich NMC chemistries.

摘要

与传统的基于N-甲基-2-吡咯烷酮(NMP)的工艺相比,LiNiMnCoO(NMC)正极的水相加工前景对电池制造商具有重大吸引力,因为它能降低材料成本、毒理学风险和环境影响。然而,在工业时间尺度下NMC粉末水相加工的影响尚未得到充分研究,此前的研究大多集中在相对短暂的水洗过程。在这项工作中,我们研究了不同组成的多晶NMC粉末长时间水相加工对整体和表面的影响。我们证明,在数小时的时间尺度上,多晶NMC易发生沿晶断裂,断裂的严重程度与NMC镍含量成正比。虽然整体结晶度和组成不变,但诸如X射线光电子能谱(XPS)和透射电子显微镜(TEM)等表面敏感技术表明,水的暴露会导致一定程度的脱锂、镍还原以及单个晶粒表面从层状结构向岩盐结构的重构。动态单NMC微粒压缩测试表明,由此产生的机械应力会削弱多晶颗粒的完整性,并增加沿晶断裂的敏感性。最初降解的表面以及增加的表面积会导致电化学循环过程中更快的容量衰减和阻抗增长。从这项工作可以看出,NMC粉末需要进行表面或晶界改性,以使工业规模的水相正极加工可行,特别是对于下一代富镍NMC化学体系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验