Suppr超能文献

基于高度混合的体异质结共混物确定有机光电探测器高性能的分子起源。

Identifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends.

作者信息

Limbu Saurav, Park Kyung-Bae, Wu Jiaying, Cha Hyojung, Yun Sungyoung, Lim Seon-Jeong, Yan Hao, Luke Joel, Ryu Gihan, Heo Chul-Joon, Kim Sunghan, Jin Yong Wan, Durrant James R, Kim Ji-Seon

机构信息

Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom.

Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea.

出版信息

ACS Nano. 2021 Jan 26;15(1):1217-1228. doi: 10.1021/acsnano.0c08287. Epub 2020 Dec 17.

Abstract

A bulk-heterojunction (BHJ) structure of organic semiconductor blend is widely used in photon-to-electron converting devices such as organic photodetectors (OPD) and photovoltaics (OPV). However, the impact of the molecular structure on the interfacial electronic states and optoelectronic properties of the constituent organic semiconductors is still unclear, limiting further development of these devices for commercialization. Herein, the critical role of donor molecular structure on OPD performance is identified in highly intermixed BHJ blends containing a small-molecule donor and C acceptor. Blending introduces a twisted structure in the donor molecule and a strong coupling between donor and acceptor molecules. This results in ultrafast exciton separation (<1 ps), producing bound (binding energy ∼135 meV), localized (∼0.9 nm), and highly emissive interfacial charge transfer (CT) states. These interfacial CT states undergo efficient dissociation under an applied electric field, leading to highly efficient OPDs in reverse bias but poor OPVs. Further structural twisting and molecular-scale aggregation of the donor molecules occur in blends upon thermal annealing just above the transition temperature of 150 °C at which donor molecules start to reorganize themselves without any apparent macroscopic phase-segregation. These subtle structural changes lead to significant improvements in charge transport and OPD performance, yielding ultralow dark currents (∼10 A cm), 2-fold faster charge extraction (in μs), and nearly an order of magnitude increase in effective carrier mobility. Our results provide molecular insights into high-performance OPDs by identifying the role of subtle molecular structural changes on device performance and highlight key differences in the design of BHJ blends for OPD and OPV devices.

摘要

有机半导体共混物的体相异质结(BHJ)结构广泛应用于有机光电探测器(OPD)和有机光伏电池(OPV)等光生电转换器件中。然而,分子结构对组成有机半导体的界面电子态和光电性能的影响仍不明确,这限制了这些器件的进一步商业化发展。在此,在含有小分子给体和C受体的高度混合BHJ共混物中,确定了给体分子结构对OPD性能的关键作用。共混在给体分子中引入了扭曲结构以及给体与受体分子之间的强耦合。这导致了超快的激子分离(<1 ps),产生了束缚态(结合能约135 meV)、局域态(约0.9 nm)和高发射性的界面电荷转移(CT)态。这些界面CT态在施加电场下会发生有效解离,从而在反向偏压下实现高效的OPD,但OPV性能较差。在略高于150°C转变温度(此时给体分子开始自行重组且无明显宏观相分离)的热退火过程中,共混物中给体分子会进一步发生结构扭曲和分子尺度的聚集。这些细微的结构变化导致电荷传输和OPD性能显著改善,产生超低暗电流(约10 A/cm)、电荷提取速度快两倍(以微秒计)以及有效载流子迁移率几乎提高一个数量级。我们的研究结果通过确定细微分子结构变化对器件性能的作用,为高性能OPD提供了分子层面的见解,并突出了用于OPD和OPV器件的BHJ共混物设计中的关键差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验