Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Melbourne, Australia.
Biomacromolecules. 2021 Feb 8;22(2):701-709. doi: 10.1021/acs.biomac.0c01510. Epub 2020 Dec 17.
Highly carboxylated nanocellulose fibers can be functionalized with cell adhesive peptides and cationic cross-linked to form matrices for a three-dimensional (3D) cell culture. It is hypothesized that nanocellulose hydrogels cross-linked with divalent cations can provide the required biochemical and mechanical properties for intestinal organoid growth and recovery. Nanocellulose hydrogels are produced by TEMPO- and TEMPO-periodate-mediated oxidation and functionalized with RGD peptides. Mechanical properties are measured by rheology and optical properties quantified by UV-vis spectroscopy. Cellulosic matrices are cross-linked with Ca and Mg and intestinal organoids cultured for 4 days. The organoids are recovered for passaging and RNA extraction. TEMPO-periodate-oxidized nanocellulose fibers form functionalized hydrogels and support the growth of intestinal organoids. The highly transparent cellulosic matrix requires 4 times more Mg than Ca ions to reach the targeted stiffness. Organoids cultured in nanocellulose maintained a major living area for up to 4 days. Cell clusters recovered from magnesium-cross-linked hydrogels can be passaged, and their extracted RNA is intact. Cationic cross-linked nanocellulose hydrogels are promising alternative plant-based matrices for a 3D cell culture systems.
高度羧化的纳米纤维素纤维可以通过细胞黏附肽进行功能化,并通过阳离子交联形成用于三维(3D)细胞培养的基质。假设用二价阳离子交联的纳米纤维素水凝胶可以为肠类器官的生长和恢复提供所需的生化和机械性能。纳米纤维素水凝胶通过 TEMPO 和 TEMPO-过氧化物介导的氧化产生,并通过 RGD 肽进行功能化。通过流变学测量力学性能,并通过紫外可见光谱定量光学性质。用 Ca 和 Mg 交联纤维素基质,并培养肠类器官 4 天。类器官用于传代和 RNA 提取。TEMPO-过氧化物氧化的纳米纤维素纤维形成功能化水凝胶,并支持肠类器官的生长。高度透明的纤维素基质需要比 Ca 离子多 4 倍的 Mg 离子才能达到目标的刚度。在纳米纤维素中培养的类器官在长达 4 天的时间内保持主要的存活区域。从镁交联水凝胶中回收的细胞簇可以传代,并且提取的 RNA 是完整的。阳离子交联的纳米纤维素水凝胶是用于 3D 细胞培养系统的有前途的植物基替代基质。