Zhang Long, Guo Jianwei, Xiao Jun, Zhang Xiaopeng, Yan Dong-Ming
IEEE Trans Vis Comput Graph. 2022 Aug;28(8):2879-2894. doi: 10.1109/TVCG.2020.3045450. Epub 2022 Jun 30.
Recognizing and fitting shape primitives from underlying 3D models are key components of many computer graphics and computer vision applications. Although a vast number of structural recovery methods are available, they usually fail to identify blending surfaces, which corresponds to small transitional regions among relatively large primary patches. To address this issue, we present a novel approach for automatic segmentation and surface fitting with accurate geometric parameters from 3D models, especially mechanical parts. Overall, we formulate the structural segmentation as a Markov random field (MRF) labeling problem. In contrast to existing techniques, we first propose a new clustering algorithm to build superfacets by incorporating 3D local geometric information. This algorithm extracts the general quadric and rolling-ball blending regions, and improves the robustness of further segmentation. Next, we apply a specially designed MRF framework to efficiently partition the original model into different meaningful patches of known surface types by defining the multilabel energy function on the superfacets. Furthermore, we present an iterative optimization algorithm based on skeleton extraction to fit rolling-ball blending patches by recovering the parameters of the rolling center trajectories and ball radius. Experiments on different complex models demonstrate the effectiveness and robustness of the proposed method, and the superiority of our method is also verified through comparisons with state-of-the-art approaches. We further apply our algorithm in applications such as mesh editing by changing the radius of the rolling balls.
从底层3D模型中识别并拟合形状基元是许多计算机图形学和计算机视觉应用的关键组成部分。尽管有大量的结构恢复方法可用,但它们通常无法识别混合曲面,混合曲面对应于相对较大的主要面片之间的小过渡区域。为了解决这个问题,我们提出了一种新颖的方法,用于从3D模型(尤其是机械零件)中进行自动分割和具有精确几何参数的曲面拟合。总体而言,我们将结构分割表述为马尔可夫随机场(MRF)标记问题。与现有技术相比,我们首先提出一种新的聚类算法,通过合并3D局部几何信息来构建超面片。该算法提取一般二次曲面和滚球混合区域,并提高进一步分割的鲁棒性。接下来,我们应用一个专门设计的MRF框架,通过在超面片上定义多标签能量函数,将原始模型有效地划分为具有已知曲面类型的不同有意义的面片。此外,我们提出一种基于骨架提取的迭代优化算法,通过恢复滚球中心轨迹的参数和球半径来拟合滚球混合面片。在不同复杂模型上的实验证明了所提方法的有效性和鲁棒性,并且通过与现有最先进方法的比较也验证了我们方法的优越性。我们还通过改变滚球半径将算法应用于网格编辑等应用中。