Suppr超能文献

基于小面图卷积的网格去噪

Mesh Denoising With Facet Graph Convolutions.

作者信息

Armando Matthieu, Franco Jean-Sebastien, Boyer Edmond

出版信息

IEEE Trans Vis Comput Graph. 2022 Aug;28(8):2999-3012. doi: 10.1109/TVCG.2020.3045490. Epub 2022 Jun 30.

Abstract

We examine the problem of mesh denoising, which consists of removing noise from corrupted 3D meshes while preserving existing geometric features. Most mesh denoising methods require a lot of mesh-specific parameter fine-tuning, to account for specific features and noise types. In recent years, data-driven methods have demonstrated their robustness and effectiveness with respect to noise and feature properties on a wide variety of geometry and image problems. Most existing mesh denoising methods still use hand-crafted features, and locally denoise facets rather than examine the mesh globally. In this work, we propose the use of a fully end-to-end learning strategy based on graph convolutions, where meaningful features are learned directly by our network. It operates on a graph of facets, directly on the existing topology of the mesh, without resampling, and follows a multi-scale design to extract geometric features at different resolution levels. Similar to most recent pipelines, given a noisy mesh, we first denoise face normals with our novel approach, then update vertex positions accordingly. Our method performs significantly better than the current state-of-the-art learning-based methods. Additionally, we show that it can be trained on noisy data, without explicit correspondence between noisy and ground-truth facets. We also propose a multi-scale denoising strategy, better suited to correct noise with a low spatial frequency.

摘要

我们研究网格去噪问题,该问题包括从受损的3D网格中去除噪声,同时保留现有的几何特征。大多数网格去噪方法需要对许多特定于网格的参数进行微调,以考虑特定特征和噪声类型。近年来,数据驱动的方法已在各种几何和图像问题上证明了其在噪声和特征属性方面的鲁棒性和有效性。大多数现有的网格去噪方法仍使用手工制作的特征,并且在局部对小平面进行去噪,而不是全局检查网格。在这项工作中,我们提出使用基于图卷积的完全端到端学习策略,其中有意义的特征由我们的网络直接学习。它在小平面的图上运行,直接基于网格的现有拓扑结构,无需重新采样,并采用多尺度设计来提取不同分辨率水平的几何特征。与大多数最新流程类似,给定一个有噪声的网格,我们首先使用我们的新方法对面法线进行去噪,然后相应地更新顶点位置。我们的方法比当前基于学习的最先进方法表现得要好得多。此外,我们表明它可以在有噪声的数据上进行训练,而无需噪声小平面与真实小平面之间的显式对应关系。我们还提出了一种多尺度去噪策略,更适合校正具有低空间频率的噪声。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验