Suppr超能文献

一种用于检测项目不匹配的项目反应函数估计的半参数方法。

A semiparametric approach for item response function estimation to detect item misfit.

机构信息

DIPF - Leibniz Institute for Research and Information in Education, Frankfurt, Germany.

IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Germany.

出版信息

Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:157-175. doi: 10.1111/bmsp.12224. Epub 2020 Dec 17.

Abstract

When scaling data using item response theory, valid statements based on the measurement model are only permissible if the model fits the data. Most item fit statistics used to assess the fit between observed item responses and the item responses predicted by the measurement model show significant weaknesses, such as the dependence of fit statistics on sample size and number of items. In order to assess the size of misfit and to thus use the fit statistic as an effect size, dependencies on properties of the data set are undesirable. The present study describes a new approach and empirically tests it for consistency. We developed an estimator of the distance between the predicted item response functions (IRFs) and the true IRFs by semiparametric adaptation of IRFs. For the semiparametric adaptation, the approach of extended basis functions due to Ramsay and Silverman (2005) is used. The IRF is defined as the sum of a linear term and a more flexible term constructed via basis function expansions. The group lasso method is applied as a regularization of the flexible term, and determines whether all parameters of the basis functions are fixed at zero or freely estimated. Thus, the method serves as a selection criterion for items that should be adjusted semiparametrically. The distance between the predicted and semiparametrically adjusted IRF of misfitting items can then be determined by describing the fitting items by the parametric form of the IRF and the misfitting items by the semiparametric approach. In a simulation study, we demonstrated that the proposed method delivers satisfactory results in large samples (i.e., N ≥ 1,000).

摘要

当使用项目反应理论对数据进行缩放时,只有在模型拟合数据的情况下,基于测量模型的有效陈述才是允许的。大多数用于评估观察到的项目反应与测量模型预测的项目反应之间拟合程度的项目拟合统计数据显示出明显的弱点,例如拟合统计数据对样本大小和项目数量的依赖性。为了评估不拟合的程度,并将拟合统计数据用作效应量,不希望其依赖于数据集的属性。本研究描述了一种新方法,并通过实证检验了其一致性。我们通过半参数自适应项目反应函数 (IRF) 开发了一种估计预测项目反应函数 (IRF) 和真实 IRF 之间距离的估计器。对于半参数自适应,使用了 Ramsay 和 Silverman (2005) 提出的扩展基函数方法。IRF 定义为线性项和通过基函数扩展构造的更灵活项的和。组套索方法被用作灵活项的正则化,确定基函数的所有参数是否固定为零或自由估计。因此,该方法可用作应通过半参数调整的项目的选择标准。然后,可以通过描述拟合项目的 IRF 的参数形式和不拟合项目的半参数方法来确定不拟合项目的预测和半参数调整的 IRF 之间的距离。在一项模拟研究中,我们证明了该方法在大样本(即 N≥1,000)中可以得到令人满意的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验