Suppr超能文献

用于升级具有坚固聚合物人工固体电解质界面的高容量复合电极组装结构的生物粘合剂纳米涂层。

Biobinder Nanocoating for Upgrading the Assembling Structures of High-Capacity Composite Electrodes with a Robust Polymeric Artificial Solid Electrolyte Interphase.

作者信息

Sun Xiao-Rong, Yu Peng, Zhang Ting-Ting, Xiao Zhi-Chao, Bao Rui-Ying, Niu Yan-Hua, Wang Yu, Yang Ming-Bo, Yang Wei

机构信息

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 30;12(52):58201-58211. doi: 10.1021/acsami.0c16589. Epub 2020 Dec 17.

Abstract

The success of next-generation lithium-ion batteries (LIBs) fundamentally depends on the rational design of not only the microstructure of an individual component but the component assembling structures on the electrode level. However, building advanced assembling structures for especially high-capacity electrodes is an urgent but a challenging task due to the lacking of in-depth understanding and effective strategies. Here, we propose a functional nanocoating biobinder using the well-known poly(lactic acid) to address the above need. It is found that the composite electrodes with this nanocoating biobinder are upgraded with uniform and robust assembling structures, including the electron-transportation network, ion-transportation network, and interfaces. Importantly, the nanocoating finally works as a new type of polymeric artificial cathode electrolyte interphase (poly-CEI) to protect the active particles. Therefore, a remarkable improvement in the electrochemical performance has been achieved for high-capacity electrodes (LiFePO, lithium nickel cobalt manganite (NCM), and lithium nickel cobalt aluminum acid (NCA)). In particular, the LFP cathode can deliver a high discharge capacity of 74.6 mA h g at 10C and a high capacity retention of 95.5% even after 850 cycles at 2C. For NCA and NCM cathodes, the cycling stability is dramatically improved due to the protection by the poly-CEI. In short, this study may reshape the essential roles of a binder in composite electrodes by highlighting its critical link to assembling structures.

摘要

下一代锂离子电池(LIBs)的成功从根本上不仅取决于单个组件微观结构的合理设计,还取决于电极层面的组件组装结构。然而,由于缺乏深入的理解和有效的策略,为特别是高容量电极构建先进的组装结构是一项紧迫但具有挑战性的任务。在此,我们提出使用著名的聚乳酸制备一种功能性纳米涂层生物粘合剂来满足上述需求。研究发现,具有这种纳米涂层生物粘合剂的复合电极具有均匀且坚固的组装结构,包括电子传输网络、离子传输网络和界面,从而得到了升级。重要的是,该纳米涂层最终起到新型聚合物人工阴极电解质界面(poly-CEI)的作用,以保护活性颗粒。因此,对于高容量电极(磷酸铁锂(LiFePO)、锂镍钴锰氧化物(NCM)和锂镍钴铝酸(NCA)),其电化学性能有了显著提升。特别是,磷酸铁锂阴极在10C时可提供74.6 mA h g的高放电容量,即使在2C下循环850次后仍具有95.5%的高容量保持率。对于NCA和NCM阴极,由于poly-CEI的保护,循环稳定性得到了显著改善。简而言之,本研究可能通过突出粘合剂与组装结构的关键联系来重塑其在复合电极中的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验