Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany.
Curr Biol. 2021 Feb 22;31(4):766-781.e8. doi: 10.1016/j.cub.2020.11.040. Epub 2020 Dec 16.
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
在有丝分裂细胞中,微管动力学的精确调节在时间和空间上对于几个有丝分裂机制至关重要,这些机制最终使细胞增殖、组织组织和发育成为可能。星体微管从中心体延伸到细胞皮层,对于纺锤体的正确定向以及后期和胞质分裂的准确执行是必需的。然而,对于星体微管动力学如何在时空上被调节,以及星体微管动力学对纺锤体定位的贡献,人们知之甚少。有丝分裂调节剂 Cdk1-CyclinB 促进中心体微管的不稳定性和微管动力学的增加,当细胞进入有丝分裂时,但 Cdk1 活性如何调节星体微管的稳定性,以及它是否影响纺锤体定位,尚不清楚。在这里,我们揭示了一种机制,表明 Cdk1 在前期使星体微管不稳定,从而影响纺锤体的重新定向。在早期有丝分裂中,Cdk1 使 EB1 依赖的微管末端追踪蛋白 GTSE1 磷酸化,从而使其与 EB1 失去相互作用,并募集到微管末端。Cdk1 活性的丧失,或 GTSE1 磷酸化位点的突变,会导致 GTSE1 在有丝分裂中募集到生长中的微管末端。这会降低星体微管的崩溃频率,并导致更多的长星体微管到达细胞皮层,从而限制了细胞在早期有丝分裂中沿着长细胞轴重新定向纺锤体的能力。因此,星体微管不仅必须存在,而且必须具有动态性,以允许纺锤体重新定向,通过 Cdk1 选择性地使长星体微管不稳定,从而辅助这种状态。