Institute of Informatics (INF), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.
Institute of Informatics (INF), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
Comput Biol Med. 2021 Feb;129:104152. doi: 10.1016/j.compbiomed.2020.104152. Epub 2020 Nov 27.
The incidence of mosquito-borne diseases is significant in under-developed regions, mostly due to the lack of resources to implement aggressive control measurements against mosquito proliferation. A potential strategy to raise community awareness regarding mosquito proliferation is building a live map of mosquito incidences using smartphone apps and crowdsourcing. In this paper, we explore the possibility of identifying Aedes aegypti mosquitoes using machine learning techniques and audio analysis captured from commercially available smartphones. In summary, we downsampled Aedes aegypti wingbeat recordings and used them to train a convolutional neural network (CNN) through supervised learning. As a feature, we used the recording spectrogram to represent the mosquito wingbeat frequency over time visually. We trained and compared three classifiers: a binary, a multiclass, and an ensemble of binary classifiers. In our evaluation, the binary and ensemble models achieved accuracy of 97.65% (±0.55) and 94.56% (±0.77), respectively, whereas the multiclass had an accuracy of 78.12% (±2.09). The best sensitivity was observed in the ensemble approach (96.82% ± 1.62), followed by the multiclass for the particular case of Aedes aegypti (90.23% ± 3.83) and the binary (88.49% ± 6.68). The binary classifier and the multiclass classifier presented the best balance between precision and recall, with F1-measure close to 90%. Although the ensemble classifier achieved the lowest precision, thus impairing its F1-measure (79.95% ± 2.13), it was the most powerful classifier to detect Aedes aegypti in our dataset.
在欠发达地区,蚊媒疾病的发病率很高,主要是由于缺乏资源来实施积极的控制措施以防止蚊虫滋生。利用智能手机应用程序和众包技术构建蚊虫滋生实时地图,是提高社区对蚊虫滋生认识的一种潜在策略。在本文中,我们探索了使用机器学习技术和从商用智能手机捕获的音频分析来识别埃及伊蚊的可能性。总之,我们对埃及伊蚊的翅膀拍打记录进行了下采样,并通过监督学习使用它们来训练卷积神经网络(CNN)。作为特征,我们使用记录的声谱图来直观地表示蚊子翅膀拍打频率随时间的变化。我们训练和比较了三个分类器:二进制、多类和二进制分类器的集成。在我们的评估中,二进制和集成模型的准确率分别为 97.65%(±0.55)和 94.56%(±0.77),而多类模型的准确率为 78.12%(±2.09)。在集成方法中观察到最好的灵敏度(96.82%±1.62),其次是多类方法针对埃及伊蚊的特定情况(90.23%±3.83)和二进制方法(88.49%±6.68)。二进制分类器和多类分类器在精度和召回率之间具有最佳的平衡,F1 度量接近 90%。虽然集成分类器的精度最低,从而降低了其 F1 度量(79.95%±2.13),但它是在我们的数据集检测埃及伊蚊最强大的分类器。