Suppr超能文献

用于高性能场效应晶体管的全共轭二嵌段共聚物中通过共结晶促进电荷迁移率

Cocrystallization-Promoted Charge Mobility in All-Conjugated Diblock Copolymers for High-Performance Field-Effect Transistors.

作者信息

Chen Shuwen, Li Lixin, Zhai Dalong, Yin Yue, Shang Xin, Ni Bijun, Peng Juan

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 30;12(52):58094-58104. doi: 10.1021/acsami.0c17671. Epub 2020 Dec 17.

Abstract

The cocrystallization method that combines various constituents into cocrystals yields the newly formed materials with significantly enhanced charge transport properties. However, this strategy has not been greatly utilized in all-conjugated block copolymers (BCPs). Herein, we scrutinize the relationship between cocrystals and charge mobilities in all-conjugated BCPs (i.e., poly(3-butylthiophene)--poly(3-hexylthiophene); denoted P3BT--P3HT) by tuning their molecular weights and thermal annealing process. All the rod-rod BCPs form cocrystals with high charge mobilities than P3BT and P3HT homopolymers and P3BT/P3HT blend, imparting the cocrystal-facilitated charge transport because of the synergy of two conjugated components. Upon 150 °C treatment, their crystallinities increase and their charge mobilities at 15k, 18k, and 28k increase slightly. In contrast, P3BT--P3HT-12k shows decreased charge mobilities. It is due to the preferential increase of crystal size and order through the π-π stacking direction in the former while through the alkyl stacking direction in the latter. Intriguingly, when these P3BT--P3HT cocrystals experience two-step thermal treatment, P3BT--P3HT-12k retains its cocrystalline structure, while microphase separation of P3BT and P3HT occurs in P3BT--P3HT-15k, 18k, and 28k with different degrees. All P3BT--P3HT BCPs exhibit decreased charge mobilities. This study demonstrates the cocrystallization-promoted charge mobility in all-conjugated BCPs, which may facilitate their application in a wide range of optoelectronic devices.

摘要

将各种成分结合形成共晶体的共结晶方法可产生电荷传输性能显著增强的新形成材料。然而,这种策略在全共轭嵌段共聚物(BCP)中尚未得到广泛应用。在此,我们通过调节全共轭BCP(即聚(3-丁基噻吩)-聚(3-己基噻吩);记为P3BT-P3HT)的分子量和热退火过程,仔细研究共晶体与电荷迁移率之间的关系。所有棒状-棒状BCP形成的共晶体比P3BT和P3HT均聚物以及P3BT/P3HT共混物具有更高的电荷迁移率,由于两种共轭组分的协同作用,赋予了共晶体促进电荷传输的特性。在150℃处理后,它们的结晶度增加,并且在15k、18k和28k时它们的电荷迁移率略有增加。相比之下,P3BT-P3HT-12k的电荷迁移率降低。这是由于前者通过π-π堆积方向优先增加晶体尺寸和有序度,而后者通过烷基堆积方向。有趣的是,当这些P3BT-P3HT共晶体经历两步热处理时,P3BT-P3HT-12k保留其共晶结构,而P3BT-P3HT-15k、18k和28k中P3BT和P3HT发生不同程度的微相分离。所有P3BT-P3HT BCP的电荷迁移率均降低。这项研究证明了全共轭BCP中共结晶促进的电荷迁移率,这可能有助于它们在广泛的光电器件中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验