Suppr超能文献

连续超滤-催化膜在水中去除多种污染物的优异性能。

Sequential Ultrafiltration-Catalysis Membrane for Excellent Removal of Multiple Pollutants in Water.

机构信息

Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.

出版信息

Environ Sci Technol. 2021 Feb 16;55(4):2652-2661. doi: 10.1021/acs.est.0c07418. Epub 2020 Dec 18.

Abstract

Clean water production calls for highly efficient and less energy-intensive technologies. Herein, a novel concept of a sequential ultrafiltration-catalysis membrane is developed by loading CoO/C@SiO yolk-shell nanoreactors into the fingerlike channels of a polymeric ultrafiltration membrane. Such a sequenced structure design successfully integrates selective separation with peroxymonosulfate-based catalysis to prepare a functionalized molecular sieve membrane, which exhibits excellent decontamination performance toward multipollutants by filtering the water matrices containing humic acid (HA) and bisphenol A (BPA). In this study, 100% rejection of HA and 95% catalytic degradation of BPA were achieved under a low pressure of 0.14 MPa and an ultrahigh flux of 229 L m h, corresponding to a retention time of 3.1 s. Notably, the removal performance of multiple pollutants essentially depends on the ordered arrangement of ultrafiltration and catalysis. Moreover, the flow-through process demonstrated significant enhancement of BPA degradation kinetics, which is 21.9 times higher than that of a conventional batch reactor. This study provides a novel strategy for excellent removal of multiple pollutants in water.

摘要

清洁水的生产需要高效且能耗较低的技术。在此,通过将 CoO/C@SiO2 核壳纳米反应器装入聚合物超滤膜的指状通道中,开发了一种新型的连续超滤-催化膜概念。这种顺序结构设计成功地将选择性分离与基于过一硫酸盐的催化结合起来,制备了一种功能化分子筛膜,该膜在过滤含有腐殖酸(HA)和双酚 A(BPA)的水基质时,对多种污染物表现出优异的去除性能。在这项研究中,在 0.14 MPa 的低压和 229 L m h 的超高通量下,实现了 100%的 HA 截留和 95%的 BPA 催化降解,相应的保留时间为 3.1 s。值得注意的是,多种污染物的去除性能主要取决于超滤和催化的有序排列。此外,流动过程显著提高了 BPA 降解动力学,比传统的间歇式反应器高 21.9 倍。本研究为水中多种污染物的优异去除提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验