ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
Leibniz Institute for Polymer Research, Hohe Straße 6, Dresden 01069, Germany.
Biomacromolecules. 2021 Feb 8;22(2):612-619. doi: 10.1021/acs.biomac.0c01463. Epub 2020 Dec 18.
Poly(ethylene glycol) (PEG) is well known to endow nanoparticles (NPs) with low-fouling and stealth-like properties that can reduce immune system clearance in vivo, making PEG-based NPs (particularly sub-100 nm) of interest for diverse biomedical applications. However, the preparation of sub-100 nm PEG NPs with controllable size and morphology is challenging. Herein, we report a strategy based on the noncovalent coordination between PEG-polyphenolic ligands (PEG-gallol) and transition metal ions using a water-in-oil microemulsion phase to synthesize sub-100 nm PEG NPs with tunable size and morphology. The metal-phenolic coordination drives the self-assembly of the PEG-gallol/metal NPs: complexation between Mn and PEG-gallol within the microemulsions yields a series of metal-stabilized PEG NPs, including 30-50 nm solid and hollow NPs, depending on the Mn/gallol feed ratio. Variations in size and morphology are attributed to the changes in hydrophobicity of the PEG-gallol/Mn complexes at varying Mn/gallol ratios based on contact angle measurements. Small-angle X-ray scattering analysis, which is used to monitor the particle size and intermolecular interactions during NP evolution, reveals that ionic interactions are the dominant driving force in the formation of the PEG-gallol/Mn NPs. pH and cytotoxicity studies, and the low-fouling properties of the PEG-gallol/Mn NPs confirm their high biocompatibility and functionality, suggesting that PEG polyphenol-metal NPs are promising systems for biomedical applications.
聚乙二醇(PEG)以赋予纳米粒子(NPs)低污和类似隐身的特性而闻名,这些特性可以减少体内免疫系统的清除,使基于 PEG 的 NPs(特别是亚 100nm)成为各种生物医学应用的关注对象。然而,制备具有可控尺寸和形态的亚 100nm PEG NPs 具有挑战性。在此,我们报告了一种基于 PEG-多酚配体(PEG-没食子酸)与过渡金属离子之间非共价配位的策略,使用油包水微乳液相来合成具有可调尺寸和形态的亚 100nm PEG NPs。金属-多酚配位驱动 PEG-没食子酸/金属 NPs 的自组装:微乳液中 Mn 与 PEG-没食子酸之间的配合物生成一系列金属稳定的 PEG NPs,包括 30-50nm 的实心和空心 NPs,具体取决于 Mn/没食子酸的进料比。尺寸和形态的变化归因于基于接触角测量的不同 Mn/没食子酸比下 PEG-没食子酸/Mn 配合物疏水性的变化。小角 X 射线散射分析用于监测 NP 演化过程中的粒径和分子间相互作用,表明离子相互作用是形成 PEG-没食子酸/Mn NPs 的主要驱动力。pH 值和细胞毒性研究以及 PEG-没食子酸/Mn NPs 的低污性质证实了它们的高生物相容性和功能,表明 PEG 多酚-金属 NPs 是生物医学应用有前途的系统。