Suppr超能文献

成纤维细胞生长因子 23 的信号转导和生理学功能。

FGF23 signalling and physiology.

机构信息

Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

J Mol Endocrinol. 2021 Feb;66(2):R23-R32. doi: 10.1530/JME-20-0178.

Abstract

Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.

摘要

成纤维细胞生长因子 23(FGF23)是一种磷酸化激素,属于内分泌 FGF 亚家族,在蠕虫和果蝇中具有进化保守的功能。FAM20C 对 FGF23 进行翻译后磷酸化,通过枯草杆菌蛋白酶样蛋白前体转化酶 FURIN 将其靶向蛋白水解,导致 FGF23 片段的分泌。FGF23 通过 GALNT3 进行 O-糖基化似乎可以防止蛋白水解,导致生物活性完整的 FGF23 的分泌。在循环中,FGF23 可能通过纤溶酶原激活剂进一步加工。晶体结构表明,同源 FGF23 受体 FGFR1c 的细胞外结构域与共受体 α-KLOTHO 的细胞外结构域结合。KLOTHO-FGFR1c 双杂二聚体为 FGF23 C 末端创建了一个高亲和力结合位点。FGF23 的拓扑结构偏离旁分泌 FGFs,导致对肝素硫酸盐的亲和力差,这可能解释了为什么 FGF23 在其由成骨谱系细胞分泌后,可自由扩散到骨基质中进入血液。通过这种经典途径的完整 FGF23 信号传导激活 FRS2/RAS/RAF/MEK/ERK1/2。它通过抑制 1,25-二羟维生素 D 合成、抑制肠道磷酸盐吸收以及下调转运蛋白 NPT2a 和 NPT2c 来减少血清磷酸盐,从而抑制近端肾小管中的磷酸盐重吸收。其生理作用可能是抑制性的 FGF23 片段仍然不清楚。经典 FGF23 信号传导的药理学和遗传激活会导致低磷血症,而其抑制则会导致高磷血症。通过结合和激活 FGFR3/FGFR4/钙调神经磷酸酶/NFAT 的非经典 FGF23 信号传导在不依赖 KLOTHO 的方式下主要发生在循环中 FGF23 水平极高的情况下,可能导致心血管疾病和慢性肾脏病中左心室肥厚的死亡率增加。

相似文献

1
FGF23 signalling and physiology.成纤维细胞生长因子 23 的信号转导和生理学功能。
J Mol Endocrinol. 2021 Feb;66(2):R23-R32. doi: 10.1530/JME-20-0178.
3
Pleiotropic Actions of FGF23.成纤维细胞生长因子23的多效性作用
Toxicol Pathol. 2017 Oct;45(7):904-910. doi: 10.1177/0192623317737469. Epub 2017 Nov 2.
8
FGF23 and Bone and Mineral Metabolism.成纤维细胞生长因子23与骨和矿物质代谢
Handb Exp Pharmacol. 2020;262:281-308. doi: 10.1007/164_2019_330.
10
Analysis of the Contribution of Proprotein Convertases to the Processing of FGF23.分析脯氨酰肽酶原转化酶对 FGF23 加工的贡献。
Front Endocrinol (Lausanne). 2021 Jun 4;12:690681. doi: 10.3389/fendo.2021.690681. eCollection 2021.

引用本文的文献

3
The role of bone in whole-body energy metabolism.骨骼在全身能量代谢中的作用。
Nat Rev Endocrinol. 2025 Aug 22. doi: 10.1038/s41574-025-01162-4.
9
New and Emerging Biomarkers in Chronic Kidney Disease.慢性肾脏病中的新型和新兴生物标志物
Biomedicines. 2025 Jun 10;13(6):1423. doi: 10.3390/biomedicines13061423.

本文引用的文献

2
Phosphate-sensing and regulatory mechanism of FGF23 production.成纤维细胞生长因子 23 产生的磷酸盐感应和调节机制。
J Endocrinol Invest. 2020 Jul;43(7):877-883. doi: 10.1007/s40618-020-01205-9. Epub 2020 Mar 5.
7
Role of phosphate sensing in bone and mineral metabolism.磷酸盐感知在骨骼和矿物质代谢中的作用。
Nat Rev Endocrinol. 2018 Nov;14(11):637-655. doi: 10.1038/s41574-018-0076-3.
8
Phosphate as a Signaling Molecule and Its Sensing Mechanism.磷酸盐作为信号分子及其感应机制。
Physiol Rev. 2018 Oct 1;98(4):2317-2348. doi: 10.1152/physrev.00022.2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验