Suppr超能文献

用于研究实验室的简化 SARS-CoV-2 检测方案。

A simplified SARS-CoV-2 detection protocol for research laboratories.

机构信息

Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America.

出版信息

PLoS One. 2020 Dec 18;15(12):e0244271. doi: 10.1371/journal.pone.0244271. eCollection 2020.

Abstract

Widespread testing is required to limit the current public health crisis caused by the COVID-19 pandemic. Multiple tests protocols have been authorized by the food and drugs administration (FDA) under an emergency use authorization (EUA). The majority of these protocols are based on the gold-standard RT-qPCR test pioneered by the U.S. Centers for Disease Control and Prevention (CDC). However, there is still a widespread lack of testing in the US and many of the clinical diagnostics protocols require extensive human labor and materials that could face supply shortages and present biosafety concerns. Given the need to develop alternative reagents and approaches to provide nucleic-acid testing in the face of heightened demand and potential shortages, we have developed a simplified SARS-CoV-2 testing protocol adapted for its use in research laboratories with minimal molecular biology equipment and expertise. The protocol utilizes TRIzol to purify the viral RNA from different types of clinical specimens, requires minimal BSL-1 precautions and, given its high sensitivity, can be easily adapted to pooling samples strategies.

摘要

广泛的检测对于限制当前由 COVID-19 大流行引起的公共卫生危机至关重要。食品和药物管理局 (FDA) 根据紧急使用授权 (EUA) 批准了多种检测方案。这些方案中的大多数都是基于美国疾病控制与预防中心 (CDC) 首创的金标准 RT-qPCR 检测。然而,美国仍然普遍缺乏检测,许多临床诊断检测方案需要大量的人力和材料,这些材料可能面临供应短缺和生物安全问题。鉴于需要开发替代试剂和方法来提供核酸检测,以应对需求的增加和潜在的短缺,我们开发了一种简化的 SARS-CoV-2 检测方案,该方案适用于具有最少分子生物学设备和专业知识的研究实验室。该方案利用 TRIzol 从不同类型的临床标本中纯化病毒 RNA,需要最少的 BSL-1 预防措施,并且由于其高灵敏度,可以很容易地适应样本混合策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2504/7748277/906e7b62a453/pone.0244271.g001.jpg

相似文献

1
A simplified SARS-CoV-2 detection protocol for research laboratories.
PLoS One. 2020 Dec 18;15(12):e0244271. doi: 10.1371/journal.pone.0244271. eCollection 2020.
4
Evaluation of sample pooling for SARS-CoV-2 RNA detection in nasopharyngeal swabs and salivas on the Roche Cobas 6800.
J Clin Virol. 2021 May;138:104790. doi: 10.1016/j.jcv.2021.104790. Epub 2021 Mar 10.
5
SARS-CoV-2 detection by fluorescence loop-mediated isothermal amplification with and without RNA extraction.
J Infect Chemother. 2021 Feb;27(2):410-412. doi: 10.1016/j.jiac.2020.10.029. Epub 2020 Oct 31.
6
7
8
"Sample pooling of RNA extracts to speed up SARS-CoV-2 diagnosis using CDC FDA EUA RT-qPCR kit".
Virus Res. 2020 Dec;290:198173. doi: 10.1016/j.virusres.2020.198173. Epub 2020 Sep 24.
10
Evaluation of SYBR Green real time PCR for detecting SARS-CoV-2 from clinical samples.
J Virol Methods. 2021 Mar;289:114035. doi: 10.1016/j.jviromet.2020.114035. Epub 2020 Dec 4.

引用本文的文献

1
Backsplicing of the HIV-1 transcript generates multiple circRNAs to promote viral replication.
Npj Viruses. 2025 Mar 28;3(1):21. doi: 10.1038/s44298-025-00105-0.
2
NK cells from COVID-19 positive patients exhibit enhanced cytotoxic activity upon NKG2A and KIR2DL1 blockade.
Front Immunol. 2023 Jul 7;14:1022890. doi: 10.3389/fimmu.2023.1022890. eCollection 2023.
3
Recent advances in RNA sample preparation techniques for the detection of SARS-CoV-2 in saliva and gargle.
Trends Analyt Chem. 2023 Aug;165:117107. doi: 10.1016/j.trac.2023.117107. Epub 2023 May 23.
5
A Sensitive, Portable Microfluidic Device for SARS-CoV-2 Detection from Self-Collected Saliva.
Infect Dis Rep. 2021 Dec 14;13(4):1061-1077. doi: 10.3390/idr13040097.
6
Clinical evaluation of antiseptic mouth rinses to reduce salivary load of SARS-CoV-2.
Sci Rep. 2021 Dec 22;11(1):24392. doi: 10.1038/s41598-021-03461-y.
7
Management of COVID-19: current status and future prospects.
Microbes Infect. 2021 May-Jun;23(4-5):104832. doi: 10.1016/j.micinf.2021.104832. Epub 2021 Apr 17.
8
A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples.
Glob Chall. 2021 Feb 22;5(4):2000068. doi: 10.1002/gch2.202000068. eCollection 2021 Apr.
9
Detection of SARS-CoV-2 in fecal samples with different pretreatment methods and PCR kits.
BMC Microbiol. 2021 Feb 19;21(1):56. doi: 10.1186/s12866-021-02118-0.

本文引用的文献

1
Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2.
N Engl J Med. 2020 Sep 24;383(13):1283-1286. doi: 10.1056/NEJMc2016359. Epub 2020 Aug 28.
2
Viral RNA Load in Mildly Symptomatic and Asymptomatic Children with COVID-19, Seoul, South Korea.
Emerg Infect Dis. 2020 Oct;26(10):2497-2499. doi: 10.3201/eid2610.202449. Epub 2020 Jun 4.
5
Saliva: potential diagnostic value and transmission of 2019-nCoV.
Int J Oral Sci. 2020 Apr 17;12(1):11. doi: 10.1038/s41368-020-0080-z.
6
Saliva is a reliable tool to detect SARS-CoV-2.
J Infect. 2020 Jul;81(1):e45-e50. doi: 10.1016/j.jinf.2020.04.005. Epub 2020 Apr 14.
8
Virological assessment of hospitalized patients with COVID-2019.
Nature. 2020 May;581(7809):465-469. doi: 10.1038/s41586-020-2196-x. Epub 2020 Apr 1.
9
Consistent Detection of 2019 Novel Coronavirus in Saliva.
Clin Infect Dis. 2020 Jul 28;71(15):841-843. doi: 10.1093/cid/ciaa149.
10
Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study.
Clin Microbiol Infect. 2019 Mar;25(3):372-378. doi: 10.1016/j.cmi.2018.06.009. Epub 2018 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验