Suppr超能文献

氮宾对黑磷的表面功能化:通过同位素标记鉴定P=N键

Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling.

作者信息

Walz Mitra Kendahl L, Chang Christine H, Hanrahan Michael P, Yang Jiaying, Tofan Daniel, Holden William M, Govind Niranjan, Seidler Gerald T, Rossini Aaron J, Velian Alexandra

机构信息

Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA.

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

出版信息

Angew Chem Int Ed Engl. 2021 Apr 12;60(16):9127-9134. doi: 10.1002/anie.202016033. Epub 2021 Mar 9.

Abstract

Surface functionalization of two-dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface-specific protocol for the surface functionalization of few-layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X-ray photoelectron, solid state P NMR, and UV-vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy, N-labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

摘要

二维晶体的表面功能化是调节其固有物理和化学性质的关键途径。然而,直接探测改性表面化学键的合成方案和实验策略却很少。本文介绍了一种温和的、表面特异性的方案,用于使用一系列由相应叠氮化物光解产生的氮烯(RN)对少层黑磷纳米片进行表面功能化。通过在有机主链中嵌入光谱标签,采用多种表征技术详细研究改性纳米片的化学结构,包括振动光谱、X射线光电子能谱、固态磷核磁共振谱和紫外可见光谱。为了直接探测表面引入的官能团,选择了R片段,以便结合振动光谱、N标记实验和密度泛函理论方法,最终确定纳米片表面指示亚氨基磷烷单元的诊断性P=N振动模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验