Suppr超能文献

碳化方法对茶渣生物炭性质的影响及其在水溶液中四环素去除的应用。

Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions.

机构信息

School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.

School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.

出版信息

Chemosphere. 2021 Mar;267:129283. doi: 10.1016/j.chemosphere.2020.129283. Epub 2020 Dec 11.

Abstract

The properties of biochars and their adsorption performance are highly dependent on the carbonation methods. In this study, five carbonation methods, namely, hydrothermal treatment (HT), direct carbonization (BC), carbonization of hydrochar (HBC), KHCO activation carbonation (KBC), and KHCO activation carbonation of hydrochar (KHBC), were adopted to prepare tea waste biochars. Adsorption behaviors and mechanisms toward tetracycline (TC) by biochar in the aquatic environment were investigated. The results showed that carbonation methods significantly influence the morphology, carbon structure, chemical composition, and functional groups of the biochars based on the characterization of surface area and pore volume analysis, Fourier Transform Infrared Spectroscopy, Raman spectrum, Scanning Electron Microscope, Transmission Electron Microscope, X-ray photoelectron spectroscopy, X-Ray Diffraction, and elemental analysis. Combination of hydrothermal treatment with KHCO activation can significantly increase the surface area and enlarge the pore structure of biochar (KHBC and KBC). The BET of KHCO-activated BCs nearly increased 280 times (KHBC: 1350.80 m g; KBC: 1405.06 m g). BET, total pore volume and micropores volume of biochar has a positive influence on TC adsorption capacity. In addition, all adsorption processes can be well fitted by Langmuir and pseudo-second-order kinetic models. The maximum adsorption capacity of KHCO-activated BCs nearly increased approximately 40 times (KHBC: 451.45 mg g; KBC: 425.17 mg g). The dominant mechanisms of biochar-adsorbed TC were pore-filling effect and π-π interactions, followed by hydrogen bonds and electrostatic interactions. Therefore, KHBC has the potential to act as sorbents for TC removal from aquatic environment.

摘要

生物炭的性质及其吸附性能高度依赖于碳化方法。在本研究中,采用了五种碳化方法,即水热处理(HT)、直接碳化(BC)、水热碳化产物(HBC)、KHCO3 活化碳化(KBC)和 KHCO3 活化水热碳化产物(KHBC),来制备茶废弃物生物炭。研究了水体环境中生物炭对四环素(TC)的吸附行为和吸附机制。结果表明,碳化方法通过表面积和孔体积分析、傅里叶变换红外光谱、拉曼光谱、扫描电子显微镜、透射电子显微镜、X 射线光电子能谱、X 射线衍射和元素分析等手段,对生物炭的形貌、碳结构、化学成分和官能团产生显著影响。水热处理与 KHCO3 活化相结合,可以显著提高生物炭的比表面积,扩大其孔结构(KHBC 和 KBC)。KHCO3 活化 BC 的 BET 几乎增加了 280 倍(KHBC:1350.80 m2/g;KBC:1405.06 m2/g)。BET、总孔体积和微孔体积对 TC 吸附容量有积极影响。此外,所有吸附过程都可以很好地拟合朗缪尔和准二级动力学模型。KHCO3 活化 BC 的最大吸附容量几乎增加了约 40 倍(KHBC:451.45 mg/g;KBC:425.17 mg/g)。生物炭吸附 TC 的主要机制是孔填充效应和π-π相互作用,其次是氢键和静电相互作用。因此,KHBC 有望作为从水体环境中去除 TC 的吸附剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验