Ji Bongjun, Lee Soon-Jae, Mazumder Mithil, Lee Moon-Sup, Kim Hyun Hwan
Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA.
Materials (Basel). 2020 Dec 16;13(24):5738. doi: 10.3390/ma13245738.
The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.
沥青结合料的工程性能取决于添加剂的类型和用量。然而,测量工程性能耗时,需要技术专长、专业设备和精力。本研究基于原子力显微镜(AFM)图像分析开发了一种深度回归模型,用于预测沥青结合料的工程性能,以测试替代传统测量估计技术的可行性。将基础沥青结合料PG 64-22和苯乙烯-异戊二烯-苯乙烯(SIS)改性剂与四种不同的聚合物添加剂含量(0%、5%、10%和15%)混合,然后用动态剪切流变仪(DSR)进行测试,以评估流变数据,这些数据表明了沥青结合料的车辙性能。使用SIS结合料的AFM图像训练不同的深度回归模型来预测工程性能。平均绝对百分比误差对最佳深度回归架构的选择起决定性作用。本研究结果表明,经过训练和验证过程后,深度回归架构在预测G*/sin值方面是有效的。深度回归模型可以成为快速测量沥青结合料工程性能的一种替代方法。本研究将鼓励应用深度回归模型来预测沥青结合料的工程性能。