文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近期小螺环、呫吨基荧光探针的研究进展。

Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes.

机构信息

Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Molecules. 2020 Dec 16;25(24):5964. doi: 10.3390/molecules25245964.


DOI:10.3390/molecules25245964
PMID:33339370
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7766215/
Abstract

The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10'. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure-behavior relationship including novel computational approaches.

摘要

荧光探针在众多应用中的使用仍然是一个不断发展的领域。这篇综述涵盖了近年来在小分子、螺环氧杂蒽基探针方面的进展,这些探针在 10 位上含有不同的杂原子(如氧、硅、碳)。在简短的介绍之后,我们将重点介绍探针与酶的相互作用以及细胞器和蛋白质的靶向标记、小分子的检测,以及它们在治疗学或诊断学和超分辨率显微镜中的应用。此外,最后一部分将总结近年来在合成和理解它们的结构-行为关系方面的进展,包括新的计算方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/05b3d36f5c63/molecules-25-05964-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/100bd6dee523/molecules-25-05964-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/c570df36c287/molecules-25-05964-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/654e7d74b4a1/molecules-25-05964-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/517a7161d8c7/molecules-25-05964-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/96a10ff87b1f/molecules-25-05964-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/362e4ff339fa/molecules-25-05964-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/00b1c62ea375/molecules-25-05964-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/935205259330/molecules-25-05964-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/37609ebe987d/molecules-25-05964-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4bcf9f0b46b4/molecules-25-05964-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/0a2e74418d8a/molecules-25-05964-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/bc5258bb428e/molecules-25-05964-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4f994de5b5bf/molecules-25-05964-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/aef78cd5ee38/molecules-25-05964-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/47c679e7a99d/molecules-25-05964-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/1aec2b9b2a70/molecules-25-05964-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/158810f58bd8/molecules-25-05964-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/c4cb2cc62a33/molecules-25-05964-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/3d03c0b509e5/molecules-25-05964-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/dc3b01bc6253/molecules-25-05964-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/274b5fa84317/molecules-25-05964-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/56a434a83ee6/molecules-25-05964-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/99139c3f6d8d/molecules-25-05964-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/d770ad65632e/molecules-25-05964-g023a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/de81c231948d/molecules-25-05964-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/5de3a39a8567/molecules-25-05964-g025a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4df7e7dde758/molecules-25-05964-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/8a976203e08c/molecules-25-05964-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/84506f44c524/molecules-25-05964-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/9b78d8c62178/molecules-25-05964-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/7464a0505abd/molecules-25-05964-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/ec95d3d2bfdd/molecules-25-05964-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/05b3d36f5c63/molecules-25-05964-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/100bd6dee523/molecules-25-05964-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/c570df36c287/molecules-25-05964-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/654e7d74b4a1/molecules-25-05964-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/517a7161d8c7/molecules-25-05964-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/96a10ff87b1f/molecules-25-05964-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/362e4ff339fa/molecules-25-05964-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/00b1c62ea375/molecules-25-05964-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/935205259330/molecules-25-05964-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/37609ebe987d/molecules-25-05964-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4bcf9f0b46b4/molecules-25-05964-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/0a2e74418d8a/molecules-25-05964-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/bc5258bb428e/molecules-25-05964-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4f994de5b5bf/molecules-25-05964-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/aef78cd5ee38/molecules-25-05964-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/47c679e7a99d/molecules-25-05964-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/1aec2b9b2a70/molecules-25-05964-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/158810f58bd8/molecules-25-05964-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/c4cb2cc62a33/molecules-25-05964-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/3d03c0b509e5/molecules-25-05964-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/dc3b01bc6253/molecules-25-05964-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/274b5fa84317/molecules-25-05964-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/56a434a83ee6/molecules-25-05964-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/99139c3f6d8d/molecules-25-05964-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/d770ad65632e/molecules-25-05964-g023a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/de81c231948d/molecules-25-05964-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/5de3a39a8567/molecules-25-05964-g025a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/4df7e7dde758/molecules-25-05964-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/8a976203e08c/molecules-25-05964-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/84506f44c524/molecules-25-05964-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/9b78d8c62178/molecules-25-05964-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/7464a0505abd/molecules-25-05964-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/ec95d3d2bfdd/molecules-25-05964-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a981/7766215/05b3d36f5c63/molecules-25-05964-g032.jpg

相似文献

[1]
Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes.

Molecules. 2020-12-16

[2]
Silicon-substituted Xanthene Dyes and Their Unique Photophysical Properties for Fluorescent Probes.

Chem Asian J. 2017-7-4

[3]
Asymmetric and Reduced Xanthene Fluorophores: Synthesis, Photochemical Properties, and Application to Activatable Fluorescent Probes for Detection of Nitroreductase.

Molecules. 2019-9-3

[4]
Silicon-substituted xanthene dyes and their applications in bioimaging.

Analyst. 2015-2-7

[5]
Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors.

Chem Commun (Camb). 2013-1-18

[6]
Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.

ACS Chem Biol. 2013-4-24

[7]
THQ-Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores.

Adv Sci (Weinh). 2023-6

[8]
Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.

Chemistry. 2012-11-23

[9]
Photodegradation of environmental mutagens by visible irradiation in the presence of xanthene dyes as photosensitizers.

Chem Pharm Bull (Tokyo). 2012

[10]
Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region.

Chem Commun (Camb). 2011-2-28

引用本文的文献

[1]
Near-Infrared Coumarin-Hemicyanine Hybrid Dyes Bearing an Intramolecular Nucleophile for Activatable Fluorescence and Raman Imaging.

Anal Chem. 2025-8-19

[2]
3,3-Bis(hydroxyaryl)oxindoles and Spirooxindoles Bearing a Xanthene Moiety: Synthesis, Mechanism, and Biological Activity.

J Org Chem. 2025-5-16

[3]
An open and shut case? Chemistry to control xanthene dyes.

Trends Chem. 2024-4

[4]
A firm-push-to-open and light-push-to-lock strategy for a general chemical platform to develop activatable dual-modality NIR-II probes.

Sci Adv. 2024-6-14

[5]
Substituent Effects of Fluorescein on Photoredox Initiating Performance under Visible Light.

ACS Omega. 2023-10-18

[6]
A CO-Responsive Imidazole-Functionalized Fluorescent Material Mediates Cancer Chemotherapy.

Pharmaceutics. 2023-1-20

[7]
Near-infrared rhodol dyes bearing salicylaldehyde moieties for ratiometric pH sensing in live cells during mitophagy and under hypoxia conditions.

J Mater Chem B. 2023-3-30

[8]
Synthesis of Novel Diketopyrrolopyrrole-Rhodamine Conjugates and Their Ability for Sensing Cu and Li.

Molecules. 2022-10-25

[9]
Recent Progress on NIR Fluorescent Probes for Enzymes.

Molecules. 2022-9-12

[10]
Late-Stage Amination of Drug-Like Benzoic Acids: Access to Anilines and Drug Conjugates through Directed Iridium-Catalyzed C-H Activation.

Chemistry. 2021-12-23

本文引用的文献

[1]
Molecular design strategy of fluorogenic probes based on quantum chemical prediction of intramolecular spirocyclization.

Commun Chem. 2020-6-26

[2]
Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor.

RSC Adv. 2020-1-16

[3]
Self-assembled amphiphilic fluorescent probe: detecting pH-fluctuations within cancer cells and tumour tissues.

Chem Sci. 2020-8-28

[4]
Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect.

Chem Sci. 2020-6-22

[5]
A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods.

Patterns (N Y). 2020-6-12

[6]
Switching of C-C and C-N Coupling/Cleavage for Hypersensitive Detection of Cu by a Catalytically Mediated 2-Aminoimidazolyl-Tailored Six-Membered Rhodamine Probe.

Org Lett. 2020-11-6

[7]
Cyanine conjugates in cancer theranostics.

Bioact Mater. 2020-9-29

[8]
Design of spontaneously blinking fluorophores for live-cell super-resolution imaging based on quantum-chemical calculations.

Chem Commun (Camb). 2020-10-6

[9]
Cyanine Conjugate-Based Biomedical Imaging Probes.

Adv Healthc Mater. 2020-11

[10]
Molecular Fluorophores for Deep-Tissue Bioimaging.

ACS Cent Sci. 2020-8-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索