Bird Clare, LeKieffre Charlotte, Jauffrais Thierry, Meibom Anders, Geslin Emmanuelle, Filipsson Helena L, Maire Olivier, Russell Ann D, Fehrenbacher Jennifer S
Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.
School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom.
Front Microbiol. 2020 Dec 3;11:604979. doi: 10.3389/fmicb.2020.604979. eCollection 2020.
Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (N-ammonium and C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, sp., and a planktonic species, . These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate C-bicarbonate. However, both species assimilated dissolved N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.
氮的可利用性常常限制海洋系统中的生物生产力,在海洋系统中,诸如铵等无机氮会被细菌和光合自养真核生物纳入食物网。最近,在有孔虫门含盗食质体的原生生物中观察到了铵同化现象,可能是通过与盗食质体一起导入的谷氨酰胺合成酶/谷氨酸合酶(GS/GOGAT)同化途径。然而,尚不清楚无处不在且种类繁多的异养原生生物是否具有铵同化的先天能力。我们使用稳定同位素培养(N-铵和C-碳酸氢盐),并将透射电子显微镜(TEM)与定量纳米级二次离子质谱(NanoSIMS)成像相结合,研究了两种异养有孔虫对溶解无机铵的摄取和同化;一种是非盗食质体的底栖物种, 种,以及一种浮游物种, 种。这些物种是异养的,不能进行光合作用。因此,它们不能同化C-碳酸氢盐。然而,这两个物种都同化了溶解的N-铵,并将其纳入对细胞个体发育生长和发育直接重要的细胞器中。这些观察结果表明,至少一些异养原生生物具有无机铵同化的先天细胞机制,突出了海洋微生物环内溶解无机氮(DIN)同化的新发现途径。