Yeo Jingjie, Jung GangSeob, Tarakanova Anna, Martín-Martínez Francisco J, Qin Zhao, Cheng Yuan, Zhang Yong-Wei, Buehler Markus J
Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Institute of High Performance Computing, Agency for Science, Technology and Research (ASTAR), Singapore 138632.
Extreme Mech Lett. 2018 Apr;20:112-124. doi: 10.1016/j.eml.2018.01.009. Epub 2018 Feb 24.
Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases. Computational characterization of these mutations has proven to be extremely valuable in identifying the intricate structure-function relationships of scleroproteins from the molecular scale up, especially if combined with multiscale experimental analysis and the synthesis of model proteins to test specific structure-function relationships. In this work, we review numerous critical diseases that are related to keratin, collagen, and elastin, and through several case studies, we propose ways of extensively utilizing multiscale modeling, from atomistic to coarse-grained molecular dynamics simulations, to uncover the molecular origins for some of these diseases and to aid in the development of novel cures and therapies. As case studies, we examine the effects of the genetic disease Epidermolytic Hyperkeratosis (EHK) on the structure and aggregation of keratins 1 and 10; we propose models to understand the diseases of Osteogenesis Imperfecta (OI) and Alport syndrome (AS) that affect the mechanical and aggregation properties of collagen; and we develop atomistic molecular dynamics and elastic network models of elastin to determine the role of mutations in diseases such as Cutis Laxa and Supravalvular Aortic Stenosis on elastin's structure and molecular conformational motions and implications for assembly.
硬蛋白是人体内一类重要的蛋白质,与典型的球状蛋白相比,它们呈现丝状、细长的构象。这些包括角蛋白、胶原蛋白和弹性蛋白,它们在细胞和组织的结构支撑中通常发挥共同的机械功能。基因突变会改变这些蛋白质,破坏其功能并导致疾病。事实证明,对这些突变进行计算表征在从分子尺度识别硬蛋白复杂的结构 - 功能关系方面极具价值,特别是如果与多尺度实验分析以及模型蛋白的合成相结合以测试特定的结构 - 功能关系。在这项工作中,我们回顾了许多与角蛋白、胶原蛋白和弹性蛋白相关的严重疾病,并通过几个案例研究,提出了广泛利用多尺度建模的方法,从原子尺度到粗粒度分子动力学模拟,以揭示其中一些疾病的分子起源,并有助于开发新的治疗方法。作为案例研究,我们研究了遗传性疾病表皮松解性角化过度症(EHK)对角蛋白1和10的结构和聚集的影响;我们提出模型来理解影响胶原蛋白机械和聚集特性的成骨不全症(OI)和阿尔波特综合征(AS);并且我们开发了弹性蛋白的原子分子动力学和弹性网络模型,以确定诸如皮肤松弛症和主动脉瓣上狭窄等疾病中的突变对弹性蛋白结构和分子构象运动的作用以及对组装的影响。