Ide Shingo, Watanabe Ken, Suematsu Koichi, Yashima Isamu, Shimanoe Kengo
Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
Mitsui-Mining & Smelting Co., Ltd., 1333-2 Haraichi, Ageo, Saitama 362-0021, Japan.
ACS Omega. 2020 Dec 1;5(49):31936-31942. doi: 10.1021/acsomega.0c04846. eCollection 2020 Dec 15.
Apatite-type lanthanum silicate (LSO) exhibits high oxide-ion conductivity and has recently garnered attention as a potential solid electrolyte for high-temperature solid oxide fuel cells and oxygen sensors that operate in the low- and intermediate-temperature ranges (300-500 °C). LSO exhibits anisotropic oxide-ion conduction along with high -axis-oriented oxide-ion conductivity. To obtain solid electrolytes with high oxide-ion conductivity, a technique for growing crystals oriented along the -axis is required. For mass production and upscaling, we have thus far focused on the vapor-phase synthesis of -axis-oriented apatite-type LSO and successfully grew polycrystals of highly -axis-oriented boron-substituted apatite-type lanthanum silicate (-LSBO) using BO vapor. Here, we investigated the mechanism of -LSBO crystal growth to determine why the utilization of BO vapor resulted in such a strong -axis crystal orientation. The synthesis of -LSBO by the BO vapor-phase method results in crystal growth accompanied by the diffusion of BO supplied from another new compound that formed on the surface of the LaSiO disk, LaBO. In addition, -LSBO crystals are formed not only by vapor-solid reactions but also by solid-solid and liquid-solid reactions. The increase in the -axis orientation degree might be due to the increase in the amount of the liquid-phase interface.
磷灰石型硅酸镧(LSO)具有高氧离子传导率,最近作为一种潜在的固体电解质受到关注,用于在低温和中温范围(300 - 500°C)运行的高温固体氧化物燃料电池和氧传感器。LSO表现出各向异性的氧离子传导以及沿c轴取向的高氧离子传导率。为了获得具有高氧离子传导率的固体电解质,需要一种生长沿c轴取向晶体的技术。为了大规模生产和扩大规模,我们目前专注于c轴取向的磷灰石型LSO的气相合成,并成功地使用B₂O₃蒸气生长出了高c轴取向的硼取代磷灰石型硅酸镧(La₉.₅Si₁.₅B₀.₅O₂₆,简称LSBO)多晶体。在此,我们研究了LSBO晶体生长的机制,以确定为何使用B₂O₃蒸气会导致如此强烈的c轴晶体取向。通过B₂O₃气相法合成LSBO会导致晶体生长,同时伴随着从在LaSiO₄盘表面形成的另一种新化合物La₃BO₃供应的B₂O₃的扩散。此外,LSBO晶体不仅通过气 - 固反应形成,还通过固 - 固和液 - 固反应形成。c轴取向度的增加可能是由于液相界面数量的增加。