Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt.
J Biopharm Stat. 2021 May 4;31(3):352-361. doi: 10.1080/10543406.2020.1858310. Epub 2020 Dec 21.
The weighted log-rank class is the common and widely used class of two-sample tests for clustered data. Clustered data with censored failure times often arise in tumorigenicity investigations and clinical trials. The randomized block design is a significant design that reduces both unintentional bias and selection bias. Accordingly, the -values of the null permutation distribution of weighted log-rank class for clustered data are approximated using the double saddlepoint approximation technique. Comprehensive simulation studies are carried out to appraise the accuracy of the saddlepoint approximation. This approximation exhibits a significant improvement in precision over the asymptotic approximation. This precision motivates us to determine the approximated confidence intervals for the treatment impact.
加权对数秩类是常用于聚类数据的两样本检验的通用且广泛使用的类。具有删失失效时间的聚类数据在肿瘤发生研究和临床试验中经常出现。随机区组设计是一种重要的设计,可减少无意偏差和选择偏差。相应地,使用双鞍点逼近技术逼近聚类数据加权对数秩类的零假设置换分布的 -值。进行了全面的模拟研究来评估鞍点逼近的准确性。这种逼近在精度上明显优于渐近逼近。这种精度促使我们确定治疗效果的近似置信区间。