Suppr超能文献

用于预测无症状脑膜瘤生长的空间机制建模

Spatial mechanistic modeling for prediction of the growth of asymptomatic meningiomas.

作者信息

Collin Annabelle, Copol Cédrick, Pianet Vivien, Colin Thierry, Engelhardt Julien, Kantor Guy, Loiseau Hugues, Saut Olivier, Taton Benjamin

机构信息

Univ. Bordeaux, Inria Bordeaux-Sud-Ouest, Bordeaux INP, CNRS, IMB, UMR 5251, Talence, F-33400, France.

Univ. Bordeaux, Inria Bordeaux-Sud-Ouest, Bordeaux INP, CNRS, IMB, UMR 5251, Talence, F-33400, France.

出版信息

Comput Methods Programs Biomed. 2021 Feb;199:105829. doi: 10.1016/j.cmpb.2020.105829. Epub 2020 Nov 7.

Abstract

BACKGROUND AND OBJECTIVE

Mathematical modeling of tumor growth draws interest from the medical community as they have the potential to improve patients' care and the use of public health resources. The main objectives of this work are to model the growth of meningiomas - slow-growing benign tumors requiring extended imaging follow-up - and to predict tumor volume and shape at a later desired time using only two times examinations.

METHODS

We develop two variants of a 3D partial differential system of equations (PDE) which yield after a spatial integration systems of ordinary differential equations (ODE) that relate tumor volume with time. Estimation of models parameters is a crucial step to obtain a personalized model for a patient that can be used for descriptive or predictive purposes. As PDE and ODE systems share the same parameters, they are both estimated by fitting the ODE systems to the tumor volumes obtained from MRI examinations acquired at different times. A population approach allows to compensate for sparse sampling times and measurement uncertainties by constraining the variability of the parameters in the population.

RESULTS

Description capabilities of the models are investigated in 39 patients with benign asymptomatic meningiomas who had had at least three surveillance MRI examinations. The two models can fit to the data accurately and more realistically than a naive linear regression. Prediction performances are validated for 33 patients using a population approach. Mean relative errors in volume predictions are less than 10% with ODE systems versus 12.5% with the naive linear model using only two times examinations. Concerning the shape, the mean Sørensen-Dice coefficients are 85% with the PDE systems in a subset of 10 representative patients.

CONCLUSIONS

Our strategy - based on personalization of mathematical model - provides a good insight on meningioma growth and may help decide whether to extend the follow-up or to treat the tumor.

摘要

背景与目的

肿瘤生长的数学模型引起了医学界的关注,因为它们有可能改善患者护理以及公共卫生资源的利用。这项工作的主要目标是对脑膜瘤(一种生长缓慢的良性肿瘤,需要长期影像学随访)的生长进行建模,并仅使用两次检查来预测在后续期望时间的肿瘤体积和形状。

方法

我们开发了一个三维偏微分方程组(PDE)的两个变体,经过空间积分后得到常微分方程组(ODE),该方程组将肿瘤体积与时间联系起来。模型参数的估计是为患者获得可用于描述或预测目的的个性化模型的关键步骤。由于PDE和ODE系统共享相同的参数,它们都通过将ODE系统拟合到从不同时间获取的MRI检查中得到的肿瘤体积来进行估计。群体方法通过限制群体中参数的变异性,能够弥补稀疏采样时间和测量不确定性的问题。

结果

在39例患有良性无症状脑膜瘤且至少进行过三次监测MRI检查的患者中研究了模型的描述能力。这两个模型比简单的线性回归能够更准确、更现实地拟合数据。使用群体方法对33例患者的预测性能进行了验证。仅使用两次检查时,ODE系统在体积预测中的平均相对误差小于10%,而简单线性模型的平均相对误差为12.5%。关于形状,在10例有代表性的患者子集中,PDE系统的平均索伦森 - 迪赛系数为85%。

结论

我们基于数学模型个性化的策略为脑膜瘤生长提供了很好的见解,并可能有助于决定是否延长随访或治疗肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验