Suppr超能文献

用于预测化疗和免疫治疗反应的经典数学模型。

Classical mathematical models for prediction of response to chemotherapy and immunotherapy.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.

出版信息

PLoS Comput Biol. 2022 Feb 4;18(2):e1009822. doi: 10.1371/journal.pcbi.1009822. eCollection 2022 Feb.

Abstract

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with three or more measurements per target lesion, of which 652 patients had six or more data points. We show that the early treatment response shows only moderate correlation with the final treatment response, demonstrating the need for nuanced models. We then perform a head-to-head comparison of six classical models which are widely used in the field: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models provide a good fit to tumor volume measurements, with the Gompertz model providing the best balance between goodness of fit and number of parameters. Similarly, when fitting to early treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecasted data, indicating that these models could potentially be effective at predicting treatment outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art models of human tumor growth. We publicly release an anonymized version of our original data, providing the first benchmark set of human tumor growth data for evaluation of mathematical models.

摘要

经典的肿瘤生长数学模型塑造了我们对癌症的理解,并对治疗计划和剂量具有广泛的实际意义。然而,即使是最简单的教科书模型在人类患者的真实世界数据中也几乎没有得到验证。在这项研究中,我们将一系列微分方程模型拟合到接受化疗或癌症免疫治疗的实体瘤患者的肿瘤体积测量值中。我们使用了一个包含 1472 名患者的大型数据集,每个目标病变有三个或更多的测量值,其中 652 名患者有六个或更多的数据点。我们表明,早期治疗反应与最终治疗反应仅具有中等相关性,这表明需要更细致的模型。然后,我们对广泛应用于该领域的六种经典模型进行了直接比较:指数模型、逻辑模型、经典贝塔朗菲模型、通用贝塔朗菲模型、经典戈珀兹模型和通用戈珀兹模型。有几个模型对肿瘤体积测量值拟合得很好,其中戈珀兹模型在拟合优度和参数数量之间取得了最佳平衡。同样,当拟合早期治疗数据时,通用贝塔朗菲和戈珀兹模型对预测数据的平均绝对误差最小,这表明这些模型有可能有效地预测治疗结果。总之,我们为经典教科书模型和人类肿瘤生长的最先进模型提供了一个定量基准。我们公开发布了我们原始数据的匿名版本,为评估数学模型提供了第一个人类肿瘤生长数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0daf/8903251/1cb5053c1cae/pcbi.1009822.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验