CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Sci Total Environ. 2021 Mar 15;760:144090. doi: 10.1016/j.scitotenv.2020.144090. Epub 2020 Dec 13.
Solid particulate pollutants such as microplastics constitute a global environmental issue in the 21st century. Many studies are exploring ways of removing these particles from marine environments such as seas and oceans. Here, we present a superhydrophobic surface obtained by combining anodisation and the liquid-phase deposition of lauric acid. The superhydrophobic surface was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) to elucidate its hierarchical structure and wetting state, while time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) were applied to identify the chemical composition of the surface, which revealed that aluminium laurate decreased the surface free energy. As microplastics are usually found in saline water, it was important to study the anticorrosion properties of the surface. Polarisation curves of the anodised surface showed excellent anticorrosion properties in 3.5 wt% NaCl aqueous solution, which was enhanced by the superhydrophobic properties when the aluminium surface was anodised for 60 min. The functionalised surface was superhydrophobic (154°) and superoleophilic (0°). These wetting properties allowed the surface to remove microplastics from the NaCl aqueous solution with an efficiency higher than 99%. Thus, we present a novel application of a superhydrophobic and anticorrosive surface in the removal of microplastics. This has not been reported previously and provides a new scope for superwettable materials and their environmental applications.
固体颗粒污染物,如微塑料,是 21 世纪全球环境面临的一个问题。许多研究都在探索从海洋等环境中去除这些颗粒的方法。在这里,我们提出了一种通过阳极氧化和月桂酸液相沉积相结合获得的超疏水表面。通过场发射扫描电子显微镜 (FE-SEM) 和原子力显微镜 (AFM) 对超疏水表面进行了检查,以阐明其分级结构和润湿状态,而飞行时间二次离子质谱 (TOF-SIMS) 和高分辨率 X 射线光电子能谱 (HR-XPS) 则用于识别表面的化学组成,结果表明月桂酸铝降低了表面自由能。由于微塑料通常存在于盐水中,因此研究表面的耐腐蚀性能非常重要。阳极氧化表面的极化曲线在 3.5wt%NaCl 水溶液中表现出优异的耐腐蚀性能,当铝表面阳极氧化 60 分钟时,超疏水性进一步增强了这种耐腐蚀性能。功能化表面具有超疏水性(154°)和超亲油性(0°)。这些润湿特性使得表面能够从 NaCl 水溶液中去除微塑料,去除效率高于 99%。因此,我们提出了一种超疏水和耐腐蚀表面在去除微塑料方面的新应用。这在以前的报道中尚未出现,为超润湿材料及其环境应用提供了新的研究方向。