Suppr超能文献

标记点过程表示工作记忆的振荡动力学。

Marked point process representation of oscillatory dynamics underlying working memory.

机构信息

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America.

Department of Neurology, University of California, San Francisco, CA, United States of America.

出版信息

J Neural Eng. 2021 Mar 1;18(2). doi: 10.1088/1741-2552/abd577.

Abstract

Computational models of neural activity at the meso-scale suggest the involvement of discrete oscillatory bursts as constructs of cognitive processing during behavioral tasks. Classical signal processing techniques that attempt to infer neural correlates of behavior from meso-scale activity employ spectral representations of the signal, exploiting power spectral density techniques and time-frequency (T-F) energy distributions to capture band power features. However, such analyses demand more specialized methods that incorporate explicitly the concepts of neurophysiological signal generation and time resolution in the tens of milliseconds. This paper focuses on working memory (WM), a complex cognitive process involved in encoding, storing and retrieving sensory information, which has been shown to be characterized by oscillatory bursts in the beta and gamma band. Employing a generative model for oscillatory dynamics, we present a marked point process (MPP) representation of bursts during memory creation and readout. We show that the markers of the point process quantify specific neural correlates of WM.We demonstrate our results on field potentials recorded from the prelimbic and secondary motor cortices of three rats while performing a WM task. The generative model for single channel, band-passed traces of field potentials characterizes with high-resolution, the timings and amplitudes of transient neuromodulations in the high gamma (80-150 Hz,) and beta (10-30 Hz,) bands as an MPP. We use standard hypothesis testing methods on the MPP features to check for significance in encoding of task variables, sensory stimulus and executive control while comparing encoding capabilities of our model with other T-F methods.Firstly, the advantages of an MPP approach in deciphering encoding mechanisms at the meso-scale is demonstrated. Secondly, the nature of state encoding by neuromodulatory events is determined. Third, we demonstrate the necessity of a higher time resolution alternative to conventionally employed T-F methods. Finally, our results underscore the novelty in interpreting oscillatory dynamics encompassed by the marked features of the point process.An MPP representation of meso-scale activity not just enables a rich, high-resolution parameter space for analysis but also presents a novel tool for diverse neural applications.

摘要

介观尺度上的神经活动计算模型表明,在行为任务中,离散的震荡爆发是认知处理的构建模块。经典的信号处理技术试图从介观活动中推断出与行为相关的神经相关性,它们利用信号的频谱表示,利用功率谱密度技术和时频(T-F)能量分布来捕获频带功率特征。然而,这种分析需要更专门的方法,这些方法明确地将神经生理信号产生和数十毫秒的时间分辨率的概念纳入其中。本文重点介绍工作记忆(WM),这是一种涉及编码、存储和检索感觉信息的复杂认知过程,已经显示出在β和γ频段的震荡爆发的特征。本文采用振荡动力学的生成模型,提出了在记忆创建和读取过程中爆发的标记点过程(MPP)表示。我们表明,点过程的标记量化了 WM 的特定神经相关性。我们在三只大鼠执行 WM 任务时记录的前额叶和次级运动皮层的场电位上展示了我们的结果。单通道、带通场电位迹线的生成模型以高分辨率表征了高伽马(80-150 Hz)和β(10-30 Hz)频段中瞬态神经调制的时间和幅度,作为一个 MPP。我们使用标准的假设检验方法对点过程特征进行检验,以检查任务变量、感觉刺激和执行控制的编码中的显著性,并比较我们的模型与其他 T-F 方法的编码能力。首先,展示了 MPP 方法在解析介观尺度上的编码机制方面的优势。其次,确定了神经调制事件的状态编码的性质。第三,我们证明了需要一种比传统 T-F 方法更高的时间分辨率替代方案。最后,我们的结果强调了标记点过程特征所包含的振荡动力学的新颖性解释。介观尺度活动的 MPP 表示不仅为分析提供了丰富的、高分辨率的参数空间,而且为各种神经应用提供了一种新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验