Fincham D A, Mason D K, Young J D
Department of Biochemistry, Faculty of Medicine, Chinese University of Hong Kong, Shatin.
Biochim Biophys Acta. 1988 Jan 13;937(1):184-94. doi: 10.1016/0005-2736(88)90240-4.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.
马红细胞中的氨基酸转运受三个共显性等位基因调控,这三个基因分别编码高亲和力转运活性(asc1系统)、低亲和力转运活性(asc2系统)和转运缺陷。asc系统对中等大小的中性氨基酸具有选择性,但与传统的ASC系统不同,其活性不需要Na+。在本系列实验中,我们采用动力学和遗传学相结合的方法来确定二元氨基酸也是asc的底物,asc1和asc2系统是马红细胞中阳离子氨基酸转运的唯一介导途径。与类似大小的中性氨基酸相比,发现这两种转运体对二元氨基酸都有强烈的偏好。通过asc1系统流入的表观Km值(mM)分别为:L-赖氨酸(9)、L-鸟氨酸(27)、L-精氨酸(27)、L-丙氨酸(0.35)。相应的Vmax估计值(37℃时每小时每升细胞的mmol数)分别为:L-赖氨酸(1.65)、L-鸟氨酸(2.15)、L-精氨酸(0.54)、L-丙氨酸(1.69)。通过asc2系统流入L-赖氨酸和L-鸟氨酸的表观Km值分别约为90和大于100 mM,Vmax值分别大于2和大于1 mmol/升细胞每小时。asc2系统摄取L-丙氨酸的表观Km和Vmax值分别为14 mM和6.90 mmol/升细胞每小时。相比之下,L-精氨酸通过asc2系统转运时,其表观Km与L-丙氨酸相同(14 mM),但Vmax低77倍。已证明这种二元氨基酸以类似于其与ASC系统相互作用的方式对asc2系统产生顺式和反式抑制,在ASC系统中,侧链胍基被认为占据转运体上的Na+结合位点。导致零转运L-丙氨酸流入50%抑制和L-丙氨酸零转运流出半最大抑制的细胞外L-精氨酸浓度分别为14 mM(细胞外L-丙氨酸浓度15 mM)和3 mM(细胞内L-丙氨酸浓度15.5 mM)。我们将这些观察结果解释为马红细胞asc转运体与ASC系统之间结构同源性的证据。从生理学角度来看,细胞内L-精氨酸可能作为asc2系统活性的内源性抑制剂发挥作用。