Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; Ministère de l'Environnement, du Climat et du Développement durable, Le Gouvernement du Grand-Duché de Luxembourg, 4361 Esch-sur-Alzette, Luxembourg.
Sci Total Environ. 2021 Feb 10;755(Pt 1):142962. doi: 10.1016/j.scitotenv.2020.142962. Epub 2020 Oct 14.
The European Alps are known as the 'water towers of Europe'. However, climatic and socioeconomic changes influence both water supply and demand, increasing the need to manage this limited and valuable resource properly to avoid user conflicts and water scarcity. Two major challenges emerge when assessing water scarcity in the Alps: Firstly, mountainous regions are very heterogeneous regarding water availability and demand over space and time, and therefore water scarcity assessments need to be done at low temporal and spatial scales. Secondly, the tight coupling of the natural and the social sphere necessitate an integrative approach considering dynamics and interactions of the social-ecological system. Hence, we applied the agent-based water supply and demand model Aqua.MORE, which is designed for catchment scale and sub-daily temporal resolution, to a case study site in the Italian Alps. In the model, the water supply, the local water managers and water users are represented by interacting model agents. We estimated the water supply by refining the annual runoff data provided by the InVEST water yield model for within-year variations. Local stakeholders contributed to the development of quantitative and spatially-explicit scenarios for land use and tourism evolution. To evaluate water supply and demand dynamics, we assessed six scenarios for the period of 2015 to 2050: three different socio-economic policy pathways, both alone and in combination with a climate change scenario. In all six scenarios, the water demand:supply (D:S) ratio continuously rises from 2015 to 2050.The highest D:S ratio values are prognosed at the beginning of the irrigation period in May. In all scenarios considering climatic changes, the D:S ratio exceeds 20% for several days, indicating potential water scarcity. The simulation results reinforce the importance of analysing water balances at a high temporal resolution and can support management processes and stakeholder dialogues for sustainable watershed management.
阿尔卑斯山被称为“欧洲的水塔”。然而,气候和社会经济变化既影响供水又影响需水,这增加了对这种有限和宝贵资源进行适当管理的必要性,以避免用户冲突和水资源短缺。在评估阿尔卑斯山的水资源短缺时,出现了两个主要挑战:首先,山区在空间和时间上的水资源供应和需求方面存在很大的异质性,因此需要在小时间和空间尺度上进行水资源短缺评估。其次,自然和社会领域的紧密结合需要采用综合方法,考虑社会生态系统的动态和相互作用。因此,我们应用了基于代理的供水和需求模型 Aqua.MORE,该模型专为集水区规模和亚日时间分辨率设计,并将其应用于意大利阿尔卑斯山的一个案例研究地点。在模型中,供水、当地水管理人员和用水户由相互作用的模型代理来表示。我们通过细化 InVEST 水量模型提供的年径流量数据来估计供水,以获得年内变化。当地利益相关者为土地利用和旅游演变的定量和空间明确情景的开发做出了贡献。为了评估供水和需水动态,我们评估了 2015 年至 2050 年期间的六个情景:三种不同的社会经济政策途径,单独考虑和与气候变化情景相结合。在所有六个情景中,供水量与需水量(D:S)之比从 2015 年持续上升到 2050 年。在所有考虑气候变化的情景中,D:S 比在 5 月灌溉期开始时达到最高值,预计有几天超过 20%,表明存在潜在的水资源短缺。模拟结果强调了在高时间分辨率下分析水量平衡的重要性,并可以为可持续流域管理提供管理过程和利益相关者对话的支持。