Suppr超能文献

深入探究影响植物中SUMO系统特异性的因素

An Insight into the Factors Influencing Specificity of the SUMO System in Plants.

作者信息

Srivastava Moumita, Sadanandom Ari

机构信息

Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.

出版信息

Plants (Basel). 2020 Dec 17;9(12):1788. doi: 10.3390/plants9121788.

Abstract

Due to their sessile nature, plants are constantly subjected to various environmental stresses such as drought, salinity, and pathogen infections. Post-translational modifications (PTMs), like SUMOylation, play a vital role in the regulation of plant responses to their environment. The process of SUMOylation typically involves an enzymatic cascade containing the activation, (E1), conjugation (E2), and ligation (E3) of SUMO to a target protein. Additionally, it also requires a class of SUMO proteases that generate mature SUMO from its precursor and cleave it off the target protein, a process termed deSUMOylation. It is now clear that SUMOylation in plants is key to a plethora of adaptive responses. How this is achieved with an extremely limited set of machinery components is still unclear. One possibility is that novel SUMO components are yet to be discovered. However, current knowledge indicates that only a small set of enzymes seem to be responsible for the modification of a large number of SUMO substrates. It is yet unknown where the specificity lies within the SUMO system. Although this seems to be a crucial question in the field of SUMOylation studies, not much is known about the factors that provide specificity. In this review, we highlight the role of the localisation of SUMO components as an important factor that can play a vital role in contributing to the specificity within the process. This will introduce a new facet to our understanding of the mechanisms underlying such a dynamic process.

摘要

由于植物固着生长的特性,它们经常受到各种环境胁迫,如干旱、盐害和病原体感染。翻译后修饰(PTM),如SUMO化,在调节植物对环境的反应中起着至关重要的作用。SUMO化过程通常涉及一个酶促级联反应,包括SUMO对靶蛋白的激活(E1)、缀合(E2)和连接(E3)。此外,它还需要一类SUMO蛋白酶,这类酶能从前体生成成熟的SUMO,并将其从靶蛋白上切割下来,这一过程称为去SUMO化。现在很清楚,植物中的SUMO化是众多适应性反应的关键。然而,如何用一套极其有限的机制组件来实现这一点仍不清楚。一种可能性是尚未发现新的SUMO组件。然而,目前的知识表明,似乎只有一小部分酶负责修饰大量的SUMO底物。SUMO系统的特异性究竟在哪里尚不清楚。尽管这似乎是SUMO化研究领域的一个关键问题,但对于提供特异性的因素知之甚少。在这篇综述中,我们强调SUMO组件定位的作用,它是一个重要因素,在该过程的特异性形成中可能起着至关重要的作用。这将为我们理解这一动态过程背后的机制引入一个新的方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cbd/7767294/1389cef9b97a/plants-09-01788-g001.jpg

相似文献

1
An Insight into the Factors Influencing Specificity of the SUMO System in Plants.
Plants (Basel). 2020 Dec 17;9(12):1788. doi: 10.3390/plants9121788.
2
SUMO proteases: uncovering the roles of deSUMOylation in plants.
J Exp Bot. 2016 Apr;67(9):2541-8. doi: 10.1093/jxb/erw092. Epub 2016 Mar 24.
3
Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance.
Mol Plant Pathol. 2018 Jun;19(6):1537-1544. doi: 10.1111/mpp.12625. Epub 2018 Feb 13.
4
Sumoylation in plants: mechanistic insights and its role in drought stress.
J Exp Bot. 2018 Aug 31;69(19):4539-4554. doi: 10.1093/jxb/ery233.
6
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity.
Essays Biochem. 2022 Aug 5;66(2):155-168. doi: 10.1042/EBC20210068.
7
Molecular mechanisms in SUMO conjugation.
Biochem Soc Trans. 2020 Feb 28;48(1):123-135. doi: 10.1042/BST20190357.
8
Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.
J Plant Physiol. 2016 Jul 1;198:69-80. doi: 10.1016/j.jplph.2016.04.007. Epub 2016 Apr 28.
9
In Vitro SUMOylation Assay to Study SUMO E3 Ligase Activity.
J Vis Exp. 2018 Jan 29(131):56629. doi: 10.3791/56629.
10
SUMO proteases as potential targets for cancer therapy.
Postepy Hig Med Dosw (Online). 2017 Dec 8;71(0):997-1004. doi: 10.5604/01.3001.0010.6667.

引用本文的文献

2
Protein Profiling of during Mesquite Infection.
Plants (Basel). 2023 Jan 19;12(3):464. doi: 10.3390/plants12030464.
3
Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants.
Front Plant Sci. 2022 Sep 20;13:993194. doi: 10.3389/fpls.2022.993194. eCollection 2022.
4
Understanding SUMO-mediated adaptive responses in plants to improve crop productivity.
Essays Biochem. 2022 Aug 5;66(2):155-168. doi: 10.1042/EBC20210068.
6
Lessons from Comparison of Hypoxia Signaling in Plants and Mammals.
Plants (Basel). 2021 May 17;10(5):993. doi: 10.3390/plants10050993.
7
The Ubiquitin Switch in Plant Stress Response.
Plants (Basel). 2021 Jan 27;10(2):246. doi: 10.3390/plants10020246.

本文引用的文献

1
Towards understanding the multifaceted role of SUMOylation in plant growth and development.
Physiol Plant. 2021 Jan;171(1):77-85. doi: 10.1111/ppl.13204. Epub 2020 Sep 18.
2
SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth.
Curr Biol. 2020 Apr 20;30(8):1410-1423.e3. doi: 10.1016/j.cub.2020.01.089. Epub 2020 Feb 27.
3
Molecular mechanisms in SUMO conjugation.
Biochem Soc Trans. 2020 Feb 28;48(1):123-135. doi: 10.1042/BST20190357.
4
Methods to study SUMO dynamics in yeast.
Methods Enzymol. 2019;618:187-210. doi: 10.1016/bs.mie.2018.12.026. Epub 2019 Feb 11.
5
Root branching toward water involves posttranslational modification of transcription factor ARF7.
Science. 2018 Dec 21;362(6421):1407-1410. doi: 10.1126/science.aau3956.
6
SIZ1-Mediated SUMOylation of TPR1 Suppresses Plant Immunity in Arabidopsis.
Mol Plant. 2019 Feb 4;12(2):215-228. doi: 10.1016/j.molp.2018.12.002. Epub 2018 Dec 11.
8
SUMO Suppresses the Activity of the Jasmonic Acid Receptor CORONATINE INSENSITIVE1.
Plant Cell. 2018 Sep;30(9):2099-2115. doi: 10.1105/tpc.18.00036. Epub 2018 Aug 16.
10
Sumoylation in plants: mechanistic insights and its role in drought stress.
J Exp Bot. 2018 Aug 31;69(19):4539-4554. doi: 10.1093/jxb/ery233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验