Suppr超能文献

移动网络在线异常检测系统。

Online Anomaly Detection System for Mobile Networks.

机构信息

Department of Communications Engineering, University of Malaga, 29071 Málaga, Spain.

Tupl Spain S.L., Tupl Inc., 29010 Málaga, Spain.

出版信息

Sensors (Basel). 2020 Dec 17;20(24):7232. doi: 10.3390/s20247232.

Abstract

The arrival of the fifth generation (5G) standard has further accelerated the need for operators to improve the network capacity. With this purpose, mobile network topologies with smaller cells are currently being deployed to increase the frequency reuse. In this way, the number of nodes that collect performance data is being further risen, so the number of metrics to be managed and analyzed is being highly increased. Therefore, it is fundamental to have tools that automatically inform the network operator of the relevant information within the vast amount of metrics collected. The continuous monitoring of the performance indicators and the automatic detection of anomalies is especially important for network operators to prevent the network degradation and user complaints. Therefore, this paper proposes a methodology to detect and track anomalies in the mobile networks performance indicators online, i.e., in real time. The feasibility of this system was evaluated with several performance metrics and a real LTE Advanced dataset. In addition, it was also compared with the performances of other state-of-the-art anomaly detection systems.

摘要

第五代(5G)标准的到来进一步加速了运营商提高网络容量的需求。出于这一目的,目前正在部署具有更小小区的移动网络拓扑结构,以提高频率复用率。这样,收集性能数据的节点数量进一步增加,因此需要管理和分析的指标数量也大大增加。因此,拥有工具来自动向网络运营商提供收集的大量指标中的相关信息至关重要。连续监测性能指标和自动检测异常对于网络运营商防止网络降级和用户投诉尤为重要。因此,本文提出了一种在线(即在实时)检测和跟踪移动网络性能指标异常的方法。使用几个性能指标和真实的 LTE 高级数据集评估了该系统的可行性。此外,还将其与其他最先进的异常检测系统的性能进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de52/7766368/0ad914e0c038/sensors-20-07232-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验