Sun Pengkai, Liu Yan, Ma Tengfei, Ding Jianping
State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Zhong Road, Shanghai 201210, China.
Cell Discov. 2020 Dec 22;6(1):94. doi: 10.1038/s41421-020-00220-7.
Human NAD-dependent isocitrate dehydrogenase or HsIDH3 catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the TCA cycle. HsIDH3 exists and functions as a heterooctamer composed of the αβ and αγ heterodimers, and is regulated allosterically and/or competitively by numerous metabolites including CIT, ADP, ATP, and NADH. In this work, we report the crystal structure of HsIDH3 containing a β mutant in apo form. In the HsIDH3 structure, the αβ and αγ heterodimers form the αβγ heterotetramer via their clasp domains, and two αβγ heterotetramers form the (αβγ) heterooctamer through insertion of the N-terminus of the γ subunit of one heterotetramer into the back cleft of the β subunit of the other heterotetramer. The functional roles of the key residues at the allosteric site, the pseudo allosteric site, the heterodimer and heterodimer-heterodimer interfaces, and the N-terminal of the γ subunit are validated by mutagenesis and kinetic studies. Our structural and biochemical data together demonstrate that the allosteric site plays an important role but the pseudo allosteric site plays no role in the allosteric activation of the enzyme; the activation signal from the allosteric site is transmitted to the active sites of both αβ and αγ heterodimers via the clasp domains; and the N-terminal of the γ subunit plays a critical role in the formation of the heterooctamer to ensure the optimal activity of the enzyme. These findings reveal the molecular mechanism of the assembly and allosteric regulation of HsIDH3.
人源烟酰胺腺嘌呤二核苷酸(NAD)依赖型异柠檬酸脱氢酶(HsIDH3)在三羧酸循环中催化异柠檬酸脱羧生成α-酮戊二酸。HsIDH3以由αβ和αγ异二聚体组成的异辛聚体形式存在并发挥功能,且受到包括柠檬酸(CIT)、二磷酸腺苷(ADP)、三磷酸腺苷(ATP)和烟酰胺腺嘌呤二核苷酸(NADH)在内的多种代谢物的变构调节和/或竞争性调节。在本研究中,我们报道了无辅基形式的含β突变体的HsIDH3的晶体结构。在HsIDH3结构中,αβ和αγ异二聚体通过它们的扣合结构域形成αβγ异四聚体,并且两个αβγ异四聚体通过将一个异四聚体γ亚基的N端插入另一个异四聚体β亚基的后裂隙中形成(αβγ)₂异辛聚体。通过诱变和动力学研究验证了变构位点、假变构位点、异二聚体和异二聚体-异二聚体界面以及γ亚基N端关键残基的功能作用。我们的结构和生化数据共同表明,变构位点在酶的变构激活中起重要作用,而假变构位点不起作用;来自变构位点的激活信号通过扣合结构域传递到αβ和αγ异二聚体的活性位点;γ亚基的N端在异辛聚体的形成中起关键作用,以确保酶的最佳活性。这些发现揭示了HsIDH3组装和变构调节的分子机制。